Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Res Sq ; 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38562728

RESUMEN

How do social factors impact the brain and contribute to increased alcohol drinking? We found that social rank predicts alcohol drinking, where subordinates drink more than dominants. Furthermore, social isolation escalates alcohol drinking, particularly impacting subordinates who display a greater increase in alcohol drinking compared to dominants. Using cellular resolution calcium imaging, we show that the basolateral amygdala-medial prefrontal cortex (BLA-mPFC) circuit predicts alcohol drinking in a rank-dependent manner, unlike non-specific BLA activity. The BLA-mPFC circuit becomes hyperexcitable during social isolation, detecting social isolation states. Mimicking the observed increases in BLA-mPFC activity using optogenetics was sufficient to increase alcohol drinking, suggesting the BLA-mPFC circuit may be a neural substrate for the negative impact of social isolation. To test the hypothesis that the BLA-mPFC circuit conveys a signal induced by social isolation to motivate alcohol consumption, we first determined if this circuit detects social information. Leveraging optogenetics in combination with calcium imaging and computer vision pose tracking, we found that BLA-mPFC circuitry governs social behavior and neural representation of social contact. We further show that BLA-mPFC stimulation mimics social isolation-induced mPFC encoding of sucrose and alcohol, and inhibition of the BLA-mPFC circuit decreases alcohol drinking following social isolation. Collectively, these data suggest the amygdala-cortical circuit mirrors a neural encoding state similar to social isolation and underlies social isolation-associated alcohol drinking.

2.
Psychopharmacology (Berl) ; 240(3): 477-499, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36522481

RESUMEN

RATIONALE: The basolateral amygdala (BLA) and medial geniculate nucleus of the thalamus (MGN) have both been shown to be necessary for the formation of associative learning. While the role that the BLA plays in this process has long been emphasized, the MGN has been less well-studied and surrounded by debate regarding whether the relay of sensory information is active or passive. OBJECTIVES: We seek to understand the role the MGN has within the thalamoamgydala circuit in the formation of associative learning. METHODS: Here, we use optogenetics and in vivo electrophysiological recordings to dissect the MGN-BLA circuit and explore the specific subpopulations for evidence of learning and synthesis of information that could impact downstream BLA encoding. We employ various machine learning techniques to investigate function within neural subpopulations. We introduce a novel method to investigate tonic changes across trial-by-trial structure, which offers an alternative approach to traditional trial-averaging techniques. RESULTS: We find that the MGN appears to encode arousal but not valence, unlike the BLA which encodes for both. We find that the MGN and the BLA appear to react differently to expected and unexpected outcomes; the BLA biased responses toward reward prediction error and the MGN focused on anticipated punishment. We uncover evidence of tonic changes by visualizing changes across trials during inter-trial intervals (baseline epochs) for a subset of cells. CONCLUSION: We conclude that the MGN-BLA projector population acts as both filter and transferer of information by relaying information about the salience of cues to the amygdala, but these signals are not valence-specified.


Asunto(s)
Amígdala del Cerebelo , Complejo Nuclear Basolateral , Amígdala del Cerebelo/fisiología , Tálamo , Complejo Nuclear Basolateral/fisiología , Condicionamiento Clásico/fisiología , Nivel de Alerta
3.
Itch (Phila) ; 4(3)2019.
Artículo en Inglés | MEDLINE | ID: mdl-34164579

RESUMEN

Plaque psoriasis is a chronic inflammatory skin disease that affects a substantial proportion of the world population. This disorder is characterized by scaly, thick skin, intense ongoing itch, and itch from light touch (such as clothing contacting skin, called "alloknesis"). Imiquimod is a topical treatment for basal cell carcinomas and warts that has been used to create a mouse model of plaque psoriasis. Imiquimod-treated male, but not female, wildtype B6 mice showed significant increases in spontaneous scratching, while both sexes exhibited increased alloknesis, indicative of chronic itch. TRPV1 and TRPA1 knockout (KO) mice all exhibited numeric increases in spontaneous scratching which were significant for TRPV1KO mice and TRPA1KO males. Female TRPV1KO and TRPA1KO mice exhibited imiquimod-induced increases in alloknesis scores that did not significantly differ from wildtypes, while alloknesis scores in imiquimod-treated male TRPV1KO and TRPA1KO mice were significantly lower compared with wildtypes, suggesting that these ion channels are necessary for the development of alloknesis in males but not females in this model. Curiously, none of the groups exhibited any significant overall change in chloroquine-evoked scratching following imiquimod treatment, indicating that hyperknesis does not develop in this mouse model. Overall, the data indicate that there are sex differences in this mouse model of psoriasis, and that TRPV1 and TRPA1 ion channels have a small role in promoting the development of itch sensitization. This contrasts with the far greater role these channels play in the manifestation of skin changes in psoriatic dermatitis.

4.
Pain ; 156(7): 1240-1246, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25830923

RESUMEN

We investigated roles for spinal neurons expressing the neurokinin-1 receptor (NK1R) and/or gastrin-releasing peptide receptor (GRPR) in a mouse model of ovalbumin (OVA)-induced chronic atopic dermatitis. Mice receiving repeated topical application of OVA exhibited atopic-like skin lesions and behavioral signs of chronic itch including spontaneous scratching, touch-evoked scratching (alloknesis), and enhancement of chloroquine-evoked scratching (hyperknesis). Substance P-saporin (SP-SAP) and bombesin-saporin (BB-SAP) were intrathecally injected into OVA-sensitized mice to neurotoxically ablate NK1R- or GRPR-expressing spinal neurons, respectively. SP-SAP diminished the expression of NK1R in the superficial spinal dorsal horn and significantly attenuated all behavioral signs of chronic itch. BB-SAP reduced the spinal dorsal horn expression of GRPR and significantly attenuated hyperknesis, with no effect on spontaneous scratching or alloknesis. To investigate whether NK1R-expressing spinal neurons project in ascending somatosensory pathways, we performed a double-label study. The retrograde tracer, Fluorogold (FG), was injected into either the somatosensory thalamus or lateral parabrachial nucleus. In the upper cervical (C1-2) spinal cord, most neurons retrogradely labeled with FG were located in the dorsomedial aspect of the superficial dorsal horn. Of FG-labeled spinal neurons, 89% to 94% were double labeled for NK1R. These results indicate that NK1R-expressing spinal neurons play a major role in the expression of symptoms of chronic itch and give rise to ascending somatosensory projections. Gastrin-releasing peptide receptor-expressing spinal neurons contribute to hyperknesis but not to alloknesis or ongoing itch. NK1R-expressing spinal neurons represent a potential target to treat chronic itch.


Asunto(s)
Células del Asta Posterior/fisiología , Prurito/metabolismo , Receptores de Neuroquinina-1/biosíntesis , Animales , Enfermedad Crónica , Regulación de la Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Prurito/etiología , Receptores de Neuroquinina-1/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA