Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Technol ; 55(8): 4389-4398, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33682412

RESUMEN

Estimates of ground-level ozone concentrations are necessary to determine the human health burden of ozone. To support the Global Burden of Disease Study, we produce yearly fine resolution global surface ozone estimates from 1990 to 2017 through a data fusion of observations and models. As ozone observations are sparse in many populated regions, we use a novel combination of the M3Fusion and Bayesian Maximum Entropy (BME) methods. With M3Fusion, we create a multimodel composite by bias-correcting and weighting nine global atmospheric chemistry models based on their ability to predict observations (8834 sites globally) in each region and year. BME is then used to integrate observations, such that estimates match observations at each monitoring site with the observational influence decreasing smoothly across space and time until the output matches the multimodel composite. After estimating at 0.5° resolution using BME, we add fine spatial detail from an additional model, yielding estimates at 0.1° resolution. Observed ozone is predicted more accurately (R2 = 0.81 at the test point, 0.63 at 0.1°, and 0.62 at 0.5°) than the multimodel mean (R2 = 0.28 at 0.5°). Global ozone exposure is estimated to be increasing, driven by highly populated regions of Asia and Africa, despite decreases in the United States and Russia.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ozono , África , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Asia , Teorema de Bayes , Entropía , Monitoreo del Ambiente , Humanos , Ozono/análisis , Federación de Rusia , Estados Unidos
2.
Lancet Planet Health ; 6(12): e958-e967, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36495890

RESUMEN

BACKGROUND: Data on long-term trends of ozone exposure and attributable mortality across urban-rural catchment areas worldwide are scarce, especially for low-income and middle-income countries. This study aims to estimate trends in ozone concentrations and attributable mortality for urban-rural catchment areas worldwide. METHODS: In this modelling study, we used a health impact function to estimate ozone concentrations and ozone-attributable chronic respiratory disease mortality for urban areas worldwide, and their surrounding peri-urban, peri-rural, and rural areas. We estimated ozone-attributable respiratory health outcomes using a modified Global Burden of Diseases, Injuries, and Risk Factors 2019 Study approach. We evaluate long-term trends with linear regressions of annual ozone concentrations and ozone-attributable mortality against time in years, and examined the influence of each health impact function input parameter to temporal changes in ozone-attributable disease burden estimates for 12 946 cities worldwide by region, from 2000 to 2019. FINDINGS: Ozone-attributable mortality worldwide increased by 46% from 2000 (290 400 deaths [95% CI 151 800-457 600]) to 2019 (423 100 deaths [95% CI 223 200-659 400]). The fraction of global ozone-attributable mortality occurring in peri-urban areas remained unchanged from 2000 to 2019 (56%), whereas urban areas gained in their share of global ozone-attributable burden (from 35% to 37%; 54 000 more deaths). Across all cities studied, average population-weighted mean ozone concentration increased by 11% (46 parts per billion [ppb] to 51 ppb). The number of cities with concentrations above the WHO peak season ozone standard (60 µg/m3) increased from 11 568 (89%) of 12 946 cities in 2000 to 12 433 (96%) cities in 2019. Percent change in ozone-attributable mortality averaged across 11 032 cities within each region from 2000 to 2019 ranged from -62% in eastern Europe to 350% in tropical Latin America. The contribution of ozone concentrations, population size, and baseline chronic respiratory disease rates to the change in ozone-attributable mortality differed regionally. INTERPRETATION: Ozone exposure is increasing worldwide, contributing to disproportionate ozone mortality in peri-urban areas and increasing ozone exposure and attributable mortality in urban areas worldwide. Reducing ozone precursor emissions in areas affecting urban and peri-urban exposure can yield substantial public health benefits. FUNDING: NASA Health and Air Quality Applied Sciences Team, the National Institute for Occupational Safety and Health, and the NOAA Co-operative Agreement with the Cooperative Institute for Research in Environmental Sciences.


Asunto(s)
Contaminación del Aire , Ozono , Enfermedades Respiratorias , Estados Unidos , Humanos , Ozono/efectos adversos , Ozono/análisis , Contaminación del Aire/efectos adversos , América Latina , Estaciones del Año , Enfermedades Respiratorias/inducido químicamente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA