Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Eur Respir J ; 61(4)2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36549711

RESUMEN

BACKGROUND: Receptor-interacting protein kinase 1 (RIPK1) is a key mediator of regulated cell death (including apoptosis and necroptosis) and inflammation, both drivers of COPD pathogenesis. We aimed to define the contribution of RIPK1 kinase-dependent cell death and inflammation in the pathogenesis of COPD. METHODS: We assessed RIPK1 expression in single-cell RNA sequencing (RNA-seq) data from human and mouse lungs, and validated RIPK1 levels in lung tissue of COPD patients via immunohistochemistry. Next, we assessed the consequences of genetic and pharmacological inhibition of RIPK1 kinase activity in experimental COPD, using Ripk1 S25D/S25D kinase-deficient mice and the RIPK1 kinase inhibitor GSK'547. RESULTS: RIPK1 expression increased in alveolar type 1 (AT1), AT2, ciliated and neuroendocrine cells in human COPD. RIPK1 protein levels were significantly increased in airway epithelium of COPD patients compared with never-smokers and smokers without airflow limitation. In mice, exposure to cigarette smoke (CS) increased Ripk1 expression similarly in AT2 cells, and further in alveolar macrophages and T-cells. Genetic and/or pharmacological inhibition of RIPK1 kinase activity significantly attenuated airway inflammation upon acute and subacute CS exposure, as well as airway remodelling, emphysema, and apoptotic and necroptotic cell death upon chronic CS exposure. Similarly, pharmacological RIPK1 kinase inhibition significantly attenuated elastase-induced emphysema and lung function decline. Finally, RNA-seq on lung tissue of CS-exposed mice revealed downregulation of cell death and inflammatory pathways upon pharmacological RIPK1 kinase inhibition. CONCLUSIONS: RIPK1 kinase inhibition is protective in experimental models of COPD and may represent a novel promising therapeutic approach.


Asunto(s)
Enfisema , Enfermedad Pulmonar Obstructiva Crónica , Enfisema Pulmonar , Humanos , Ratones , Animales , Pulmón , Muerte Celular , Inflamación/metabolismo , Ratones Endogámicos C57BL , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo
2.
Cell Death Dis ; 14(11): 755, 2023 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-37980412

RESUMEN

Plasma membrane permeabilization (PMP) is a defining feature of regulated necrosis. It allows the extracellular release of damage-associated molecular patterns (DAMPs) that trigger sterile inflammation. The pore forming molecules MLKL and GSDMs drive PMP in necroptosis and pyroptosis, respectively, but the process of PMP remains unclear in many other forms of regulated necrosis. Here, we identified NINJ1 as a crucial regulator of PMP and consequent DAMP release during ferroptosis, parthanatos, H2O2-induced necrosis and secondary necrosis. Importantly, the membrane-permeabilizing function of NINJ1 takes place after the metabolic death of the cells and is independent of the pore-forming molecules MLKL, GSDMD and GSDME. During ferroptosis, NINJ1 acts downstream of lipid peroxidation, which suggested a role for reactive oxygen species (ROS) in NINJ1 activation. Reactive oxygen species were however neither sufficient nor required to trigger NINJ1-dependent PMP. Instead, we found that NINJ1 oligomerization is induced by the swelling of the cell and that its permeabilizing potential still requires an addition, and yet to be discovered, activation mechanism.


Asunto(s)
Apoptosis , Peróxido de Hidrógeno , Humanos , Especies Reactivas de Oxígeno/metabolismo , Peróxido de Hidrógeno/metabolismo , Apoptosis/fisiología , Necrosis/metabolismo , Membrana Celular/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Moléculas de Adhesión Celular Neuronal/metabolismo
3.
Biomedicines ; 10(5)2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35625752

RESUMEN

RIPK1 (receptor-interacting serine/threonine-protein kinase 1) enzymatic activity drives both apoptosis and necroptosis, a regulated form of necrosis. Because necroptosis is involved in necrotic core development in atherosclerotic plaques, we investigated the effects of a RIPK1S25D/S25D mutation, which prevents activation of RIPK1 kinase, on atherogenesis in ApoE-/- mice. After 16 weeks of western-type diet (WD), atherosclerotic plaques from ApoE-/- RIPK1S25D/S25D mice were significantly larger compared to ApoE-/- RIPK1+/+ mice (167 ± 34 vs. 78 ± 18 × 103 µm2, p = 0.01). Cell numbers (350 ± 34 vs. 154 ± 33 nuclei) and deposition of glycosaminoglycans (Alcian blue: 31 ± 6 vs. 14 ± 4%, p = 0.023) were increased in plaques from ApoE-/- RIPK1S25D/S25D mice while macrophage content (Mac3: 2.3 ± 0.4 vs. 9.8 ± 2.4%, p = 0.012) was decreased. Plaque apoptosis was not different between both groups. In contrast, pharmacological inhibition of RIPK1 kinase with GSK'547 (10 mg/kg BW/day) in ApoE-/- Fbn1C1039G+/- mice, a model of advanced atherosclerosis, did not alter plaque size after 20 weeks WD, but induced apoptosis (TUNEL: 136 ± 20 vs. 62 ± 9 cells/mm2, p = 0.004). In conclusion, inhibition of RIPK1 kinase activity accelerated plaque progression in ApoE-/- RIPK1S25D/S25D mice and induced apoptosis in GSK'547-treated ApoE-/- Fbn1C1039G+/- mice. Thus, without directly comparing the genetic and pharmacological studies, it can be concluded that targeting RIPK1 kinase activity does not limit atherogenesis.

4.
Cell Death Dis ; 12(7): 699, 2021 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-34262020

RESUMEN

Butylate hydroxyanisole (BHA) is a synthetic phenol that is widely utilized as a preservative by the food and cosmetic industries. The antioxidant properties of BHA are also frequently used by scientists to claim the implication of reactive oxygen species (ROS) in various cellular processes, including cell death. We report on the surprising finding that BHA functions as a direct inhibitor of RIPK1, a major signaling hub downstream of several immune receptors. Our in silico analysis predicts binding of 3-BHA, but not 2-BHA, to RIPK1 in an inactive DLG-out/Glu-out conformation, similar to the binding of the type III inhibitor Nec-1s to RIPK1. This predicted superior inhibitory capacity of 3-BHA over 2-BHA was confirmed in cells and using in vitro kinase assays. We demonstrate that the reported protective effect of BHA against tumor necrosis factor (TNF)-induced necroptotic death does not originate from ROS scavenging but instead from direct RIPK1 enzymatic inhibition, a finding that most probably extends to other reported effects of BHA. Accordingly, we show that BHA not only protects cells against RIPK1-mediated necroptosis but also against RIPK1 kinase-dependent apoptosis. We found that BHA treatment completely inhibits basal and induced RIPK1 enzymatic activity in cells, monitored at the level of TNFR1 complex I under apoptotic conditions or in the cytosol under necroptosis. Finally, we show that oral administration of BHA protects mice from RIPK1 kinase-dependent lethality caused by TNF injection, a model of systemic inflammatory response syndrome. In conclusion, our results demonstrate that BHA can no longer be used as a strict antioxidant and that new functions of RIPK1 may emerge from previously reported effects of BHA.


Asunto(s)
Apoptosis/efectos de los fármacos , Hidroxianisol Butilado/farmacología , Fibroblastos/efectos de los fármacos , Aditivos Alimentarios/farmacología , Necroptosis/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Proteína Serina-Treonina Quinasas de Interacción con Receptores/antagonistas & inhibidores , Síndrome de Respuesta Inflamatoria Sistémica/prevención & control , Animales , Antioxidantes/farmacología , Modelos Animales de Enfermedad , Femenino , Fibroblastos/enzimología , Fibroblastos/patología , Células HT29 , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Simulación del Acoplamiento Molecular , Unión Proteica , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Síndrome de Respuesta Inflamatoria Sistémica/inducido químicamente , Síndrome de Respuesta Inflamatoria Sistémica/enzimología , Síndrome de Respuesta Inflamatoria Sistémica/patología , Factor de Necrosis Tumoral alfa
5.
Trends Cell Biol ; 30(3): 189-200, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31959328

RESUMEN

The serine/threonine kinase RIPK1 has emerged as a crucial component of the inflammatory response activated downstream of several immune receptors, where it paradoxically functions as a scaffold to protect the cell from death or instead as an active kinase to promote the killing of the cell. While RIPK1 kinase-dependent cell death has revealed its physiological importance in the context of microbial infection, aberrant activation of RIPK1 is also demonstrated to promote cell death-driven inflammatory pathologies, highlighting the importance of fundamentally understanding proper RIPK1 regulation. Recent advances in the field demonstrated the crucial role of phosphorylation in the fine-tuning of RIPK1 activation and, additionally, question the exact mechanism by which RIPK1 enzymatic activity transmits the death signal.


Asunto(s)
Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Animales , Muerte Celular , Humanos , Modelos Biológicos , Fosforilación , Proteína Serina-Treonina Quinasas de Interacción con Receptores/química , Ubiquitinación
6.
Nat Commun ; 11(1): 1747, 2020 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-32269263

RESUMEN

Receptor interacting protein kinase 1 (RIPK1) regulates cell death and inflammatory responses downstream of TNFR1 and other receptors, and has been implicated in the pathogenesis of inflammatory and degenerative diseases. RIPK1 kinase activity induces apoptosis and necroptosis, however the mechanisms and phosphorylation events regulating RIPK1-dependent cell death signaling remain poorly understood. Here we show that RIPK1 autophosphorylation at serine 166 plays a critical role for the activation of RIPK1 kinase-dependent apoptosis and necroptosis. Moreover, we show that S166 phosphorylation is required for RIPK1 kinase-dependent pathogenesis of inflammatory pathologies in vivo in four relevant mouse models. Mechanistically, we provide evidence that trans autophosphorylation at S166 modulates RIPK1 kinase activation but is not by itself sufficient to induce cell death. These results show that S166 autophosphorylation licenses RIPK1 kinase activity to induce downstream cell death signaling and inflammation, suggesting that S166 phosphorylation can serve as a reliable biomarker for RIPK1 kinase-dependent pathologies.


Asunto(s)
Apoptosis , Inflamación/metabolismo , Inflamación/patología , Fosfoserina/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Alanina Transaminasa/metabolismo , Animales , Células de la Médula Ósea/citología , Colitis/patología , Genotipo , Hepatitis/patología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Mutación/genética , Neoplasias/patología , Fosforilación , Sepsis/patología , Piel/patología , Factor de Necrosis Tumoral alfa
7.
Nat Commun ; 10(1): 1729, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30988283

RESUMEN

RIPK1 regulates cell death and inflammation through kinase-dependent and -independent mechanisms. As a scaffold, RIPK1 inhibits caspase-8-dependent apoptosis and RIPK3/MLKL-dependent necroptosis. As a kinase, RIPK1 paradoxically induces these cell death modalities. The molecular switch between RIPK1 pro-survival and pro-death functions remains poorly understood. We identify phosphorylation of RIPK1 on Ser25 by IKKs as a key mechanism directly inhibiting RIPK1 kinase activity and preventing TNF-mediated RIPK1-dependent cell death. Mimicking Ser25 phosphorylation (S > D mutation) protects cells and mice from the cytotoxic effect of TNF in conditions of IKK inhibition. In line with their roles in IKK activation, TNF-induced Ser25 phosphorylation of RIPK1 is defective in TAK1- or SHARPIN-deficient cells and restoring phosphorylation protects these cells from TNF-induced death. Importantly, mimicking Ser25 phosphorylation compromises the in vivo cell death-dependent immune control of Yersinia infection, a physiological model of TAK1/IKK inhibition, and rescues the cell death-induced multi-organ inflammatory phenotype of the SHARPIN-deficient mice.


Asunto(s)
Apoptosis , Modelos Inmunológicos , Proteína Serina-Treonina Quinasas de Interacción con Receptores/fisiología , Animales , Caspasa 8/genética , Caspasa 8/metabolismo , Caspasa 8/fisiología , Línea Celular , Quinasa I-kappa B/metabolismo , Quinasa I-kappa B/fisiología , Inmunidad/fisiología , Ratones , Fosforilación , Proteína Serina-Treonina Quinasas de Interacción con Receptores/química , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Serina/química , Serina/metabolismo , Yersinia , Yersiniosis/inmunología
8.
Nat Cell Biol ; 19(10): 1237-1247, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28920952

RESUMEN

TNF is a master proinflammatory cytokine whose pathogenic role in inflammatory disorders can, in certain conditions, be attributed to RIPK1 kinase-dependent cell death. Survival, however, is the default response of most cells to TNF stimulation, indicating that cell demise is normally actively repressed and that specific checkpoints must be turned off for cell death to proceed. We identified RIPK1 as a direct substrate of MK2 in the TNFR1 signalling pathway. Phosphorylation of RIPK1 by MK2 limits cytosolic activation of RIPK1 and the subsequent assembly of the death complex that drives RIPK1 kinase-dependent apoptosis and necroptosis. In line with these in vitro findings, MK2 inactivation greatly sensitizes mice to the cytotoxic effects of TNF in an acute model of sterile shock caused by RIPK1-dependent cell death. In conclusion, we identified MK2-mediated RIPK1 phosphorylation as an important molecular mechanism limiting the sensitivity of the cells to the cytotoxic effects of TNF.


Asunto(s)
Apoptosis/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Choque/inducido químicamente , Factor de Necrosis Tumoral alfa/toxicidad , Animales , Línea Celular , Citosol/enzimología , Modelos Animales de Enfermedad , Activación Enzimática , Femenino , Fibroblastos/enzimología , Fibroblastos/patología , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones , Ratones Endogámicos C57BL , Necrosis , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/antagonistas & inhibidores , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Receptores Tipo I de Factores de Necrosis Tumoral/agonistas , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Serina , Choque/enzimología , Choque/patología , Choque/prevención & control , Transducción de Señal/efectos de los fármacos , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA