Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 1684, 2024 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-38243111

RESUMEN

Knowledge of the trophic structure and variability of planktonic communities is a key factor in understanding food-web dynamics and energy transfer from zooplankton to higher trophic levels. In this study, we investigated how stable isotopes of mesozooplankton species varied seasonally (winter, spring, autumn) in relation to environmental factors and plankton size classes in a temperate coastal ecosystem. Our results showed that spring is characterized by the strongest vertical and size-structured plankton food-web, mainly fueled by the phytoplankton bloom. As a result, spring displayed the largest isotopic niche space and trophic divergence among species. On the contrary, both pelagic and benthic-derived carbon influenced low productive seasons (winter and autumn), resulting in more generalist strategies (trophic redundancy). Stable isotope mixing models were used to explore how different seasonal structures influenced the overall food web up to predatory plankton (i.e., mysids, chaetognaths, and fish larvae). Different feeding strategies were found in spring, with predators having either a clear preference for larger prey items (> 1 mm, for herring and dab larvae) or a more generalist diet (sprat and dragonets larvae). During low productive seasons, predators seemed to be more opportunistic, feeding on a wide range of size classes but focusing on smaller prey. Overall, the food-web architecture of plankton displayed different seasonal patterns linked to components at the base of the food web that shaped the main energy fluxes, either from phytoplankton or recycled material. Additionally, these patterns extended to carnivorous plankton, such as fish larvae, emphasizing the importance of bottom-up processes.


Asunto(s)
Cadena Alimentaria , Plancton , Animales , Ecosistema , Estaciones del Año , Fitoplancton , Zooplancton , Peces , Larva
2.
PeerJ ; 4: e1829, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27069786

RESUMEN

Mussel biofiltration is a widely used approach for the mitigation of aquaculture water. In this study, we investigated the effect of mussel biofiltration on the communities of particle-associated bacteria and unicellular eukaryotes in a sea bass aquaculture in southern North Sea. We assessed the planktonic community changes before and after biofiltration based on the diversity of the 16S and 18S rRNA genes by using next generation sequencing technologies. Although there was no overall reduction in the operational taxonomic units (OTU) numbers between the control (no mussels) and the test (with mussels) tanks, a clear reduction in the relative abundance of the top three most dominant OTUs in every sampling time was observed, ranging between 2-28% and 16-82% for Bacteria and Eukarya, respectively. The bacterial community was dominated by OTUs related to phytoplankton blooms and/or high concentrations of detritus. Among the eukaryotes, several fungal and parasitic groups were found. Their relative abundance in most cases was also reduced from the control to the test tanks; a similar decreasing pattern was also observed for both major higher taxa and functional (trophic) groups. Overall, this study showed the effectiveness of mussel biofiltration on the decrease of microbiota abundance and diversity in seawater fueling fish farms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA