Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Environ Qual ; 41(4): 990-1000, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22751041

RESUMEN

Biochars are increasingly used as soil amendment and for C sequestration in soils. The influence of feedstock differences and pyrolysis temperature on biochar characteristics has been widely studied. However, there is a lack of knowledge about the formation of potentially toxic compounds that remain in the biochars after pyrolysis. We investigated biochars from three feedstocks (wheat straw, poplar wood, and spruce wood) that were slowly pyrolyzed at 400, 460, and 525°C for 5 h (straw) and 10 h (woodchips), respectively. We characterized the biochars' pH, electrical conductivity, elemental composition (by dry combustion and X-ray fluorescence), surface area (by N adsorption), water-extractable major elements, and cation exchange capacity (CEC). We further conducted differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FTIR), and X-ray diffractometry to obtain information on the biochars' molecular characteristics and mineralogical composition. We investigated trace metal content, total polycyclic aromatic hydrocarbon (PAH) content, and PAH composition in the biochars. The highest salt (4.92 mS cm) and ash (12.7%) contents were found in straw-derived biochars. The H/C ratios of biochars with highest treatment temperature (HTT) 525°C were 0.46 to 0.40. Surface areas were low but increased (1.8-56 m g) with increasing HTT, whereas CEC decreased (162-52 mmol kg) with increasing HTT. The results of DSC and FTIR suggested a loss of labile, aliphatic compounds during pyrolysis and the formation of more recalcitrant, aromatic constituents. X-ray diffractometry patterns indicated a mineralogical restructuring of biochars with increasing HTT. Water-extractable major and trace elements varied considerably with feedstock composition, with trace elements also affected by HTT. Total PAH contents (sum of EPA 16 PAHs) were highly variable with values up to 33.7 mg kg; irrespective of feedstock type, the composition of PAHs showed increasing dominance of naphthalene with increasing HTT. The results demonstrate that biochars are highly heterogeneous materials that, depending on feedstock and HTT, may be suitable for soil application by contributing to the nutrient status and adding recalcitrant C to the soil but also potentially pose ecotoxicological challenges.


Asunto(s)
Carbón Orgánico/química , Incineración/métodos , Tallos de la Planta , Temperatura , Madera , Rastreo Diferencial de Calorimetría , Elementos Químicos , Picea/química , Tallos de la Planta/química , Hidrocarburos Policíclicos Aromáticos , Populus/química , Espectroscopía Infrarroja por Transformada de Fourier , Triticum/química , Madera/química , Difracción de Rayos X
2.
J Environ Qual ; 39(3): 761-75, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20400572

RESUMEN

The world's ever-growing energy demand will lead to the installation of new coal-fired power plants. At least part of the coal combustion residue (CCR) generated in the coming years will be disposed of, adding to the large number of CCR disposal sites generated in the past and reinforcing the need for sound assessment and management of associated risks. Physical and chemical composition of CCR varies considerably depending on the quality of the feed coal, the combustion technology, fraction considered, and the method of disposal. Related risk pathways include (i) aerial routes, i.e., dust resuspension (Cr(VI)), emanation of radioactivity (Rn associated with U and Th series), and Hg volatilization threatening animal and human health; (ii) phytoaccumulation (B, Se, Mo, As) and plant toxicity (B) with subsequent effects on animals (e.g., Mo-induced hypocuprosis, As and Se toxicity) and humans (e.g., selenosis; food chain); and (iii) effluent discharge and percolation to groundwater and rivers (suspended solids, unfavorable pH, high Se, B, Hg, and As(III) concentrations). Recent and projected changes of CCR composition due to emerging clean coal technologies require close monitoring as the concentration of volatile elements such as Hg and Se, solubility (Hg, Cd, Cu) and volatilization (Hg, NH(3)) of some pollutants are likely to increase because of higher retention in certain fractions of CCRs and concurrent changes in pH (e.g., by mineral carbonation) and NH(3) content. These changes require additional research efforts to explore the implications for CCR quality, use, and management of risk associated with disposal sites.


Asunto(s)
Carbón Mineral , Suministros de Energía Eléctrica , Contaminantes Ambientales , Eliminación de Residuos/métodos , Conservación de los Recursos Naturales , Gestión de Riesgos
3.
Environ Pollut ; 153(3): 677-86, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17949870

RESUMEN

The disposal of coal combustion residues (CCR) has led to a significant consumption of land in the West Balkan region. In Tuzla (Bosnia and Herzegovina) we studied previously soil-covered (farmed) and barren CCR landfills including management practises, field ageing of CCR and the transfer of trace elements into crops, wild plants and wastewaters. Soil tillage resulted in mixing of cover soil with CCR. Medicago sativa showed very low Cu:Mo ratios (1.25) which may cause hypocuprosis in ruminants. Total loads of inorganic pollutants in the CCR transport water, but not pH ( approximately 12), were below regulatory limits of most EU countries. Arsenic concentrations in CCR transport water were <2microgl(-1) whereas reductive conditions in an abandoned landfill significantly enhanced concentrations in leachates (44microgl(-1)). The opposite pattern was found for Cr likely due to large initial leaching of CrVI. Public use of landfills, including farming, should be based on a prior risk assessment due to the heterogeneity of CCR.


Asunto(s)
Agricultura , Contaminación Ambiental , Restauración y Remediación Ambiental/métodos , Residuos Industriales , Eliminación de Residuos , Adsorción , Arsénico/análisis , Bosnia y Herzegovina , Cromo/análisis , Carbón Mineral , Cobre/análisis , Monitoreo del Ambiente/métodos , Humanos , Concentración de Iones de Hidrógeno , Incineración , Molibdeno/análisis , Centrales Eléctricas , Riesgo , Contaminantes del Suelo/análisis , Tiempo
4.
Sci Total Environ ; 544: 711-21, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26674700

RESUMEN

The ever increasing use of wood material as fuel for green energy production requires innovative, environmentally safe strategies for recycling of the remaining wood ash. Utilizing wood ash in forest road construction and maintenance to improve mechanical stability has been suggested as a feasible recycling option. To investigate the environmental impact of wood ash application in forest road maintenance, a two-year field experiment was conducted at two Austrian forest sites (Kobernausserwald (KO) (soil pH 5.5) and Weyregg (WE) (pH 7.7)) differing in their soil chemical properties. Two different ashes, one produced by grate incineration (GA) and the other by fluidized bed incineration in a mixture with 15 vol% burnt lime (FBA), were incorporated in repeated road sections at a 15:85% (V/V) ash-to-soil rate. Leaching waters from the road body were collected and analyzed for 32 environmentally relevant parameters over two years. Upon termination of the experiment, sub-road soil samples were collected and analyzed for ash-related changes in soil chemistry. Even though a larger number of parameters was affected by the ash application at the alkaline site (WE), we observed the most pronounced initial increases of pH as well as Al, As, Fe, Mn, Ni, Co, Cu, Mo, and NO2(−) concentrations in leachates beneath GA-treated road bodies at Kobernausserwald due to the lower soil buffer capacity at this site. Despite the observed effects our results indicate that, when specific requirements are met (i.e. appropriate ash quality, sufficient soil buffer capacity below the road body, and single time-point ash incorporation within several decades), wood ash application in forest road construction is generally environmentally acceptable.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA