Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Neuroendocrinology ; 113(12): 1298-1311, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35753306

RESUMEN

INTRODUCTION: The extensive use of the insecticide chlorpyrifos (CPF) throughout the world has brought increased scrutiny on its environmental and health impact. CPF is a cholinergic neurotoxicant; however, exposure to low noncholinergic doses is associated with numerous neurodevelopmental effects in animal models. In this study, we aimed to assess CPF for its potential to disrupt thyroid hormone signalling and investigate the short- and long-term effects on neurodevelopment by using Xenopus laevis. METHODS: The thyroid hormone (TH) disrupting potential of CPF was assessed using TH-sensitive transgenic Tg(thibz:eGFP) tadpoles. The consequences of early embryonic exposure were examined by exposing fertilized eggs for 72 h to environmentally relevant CPF concentrations (10-10 M and 10-8 M). Three endpoints were evaluated: (1) gene expression in whole embryonic brains immediately after exposure, (2) mobility and brain morphology 1 week after exposure, and (3) brain morphology and axon diameters at the end of metamorphosis (2 months after the exposure). RESULTS: CPF disrupted TH signalling in Tg(thibz:eGFP) tadpoles. The expression of genes klf9, cntn4, oatp1c1, and tubb2b was downregulated in response to CPF. Tadpoles exposed to CPF exhibited increased mobility and altered brain morphology compared to control tadpoles. Early embryonic exposure of CPF affected myelinated axon diameter, with exposed animals exhibiting shifted frequency distributions of myelinated axons diameters towards smaller diameters in the hindbrain of froglets. DISCUSSION/CONCLUSION: This study provides more evidence of the endocrine and neurodevelopment disrupting activity of CPF. Further experimental and epidemiological studies are warranted to determine the long-term consequences of early CPF exposure on brain development.


Asunto(s)
Cloropirifos , Animales , Xenopus laevis/metabolismo , Cloropirifos/toxicidad , Cloropirifos/metabolismo , Hormonas Tiroideas , Metamorfosis Biológica/fisiología , Encéfalo/metabolismo
2.
Proc Natl Acad Sci U S A ; 116(9): 3614-3623, 2019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30755533

RESUMEN

Despite therapeutic advances, heart failure is the major cause of morbidity and mortality worldwide, but why cardiac regenerative capacity is lost in adult humans remains an enigma. Cardiac regenerative capacity widely varies across vertebrates. Zebrafish and newt hearts regenerate throughout life. In mice, this ability is lost in the first postnatal week, a period physiologically similar to thyroid hormone (TH)-regulated metamorphosis in anuran amphibians. We thus assessed heart regeneration in Xenopus laevis before, during, and after TH-dependent metamorphosis. We found that tadpoles display efficient cardiac regeneration, but this capacity is abrogated during the metamorphic larval-to-adult switch. Therefore, we examined the consequence of TH excess and deprivation on the efficiently regenerating tadpole heart. We found that either acute TH treatment or blocking TH production before resection significantly but differentially altered gene expression and kinetics of extracellular matrix components deposition, and negatively impacted myocardial wall closure, both resulting in an impeded regenerative process. However, neither treatment significantly influenced DNA synthesis or mitosis in cardiac tissue after amputation. Overall, our data highlight an unexplored role of TH availability in modulating the cardiac regenerative outcome, and present X. laevis as an alternative model to decipher the developmental switches underlying stage-dependent constraint on cardiac regeneration.


Asunto(s)
Insuficiencia Cardíaca/prevención & control , Regeneración/genética , Hormonas Tiroideas/metabolismo , Xenopus laevis/genética , Animales , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Insuficiencia Cardíaca/fisiopatología , Humanos , Larva/genética , Larva/crecimiento & desarrollo , Metamorfosis Biológica/genética , Ratones , Salamandridae/genética , Salamandridae/crecimiento & desarrollo , Hormonas Tiroideas/administración & dosificación , Hormonas Tiroideas/genética , Xenopus laevis/crecimiento & desarrollo , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo
3.
Environ Health ; 19(1): 25, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-32122363

RESUMEN

Food packaging is of high societal value because it conserves and protects food, makes food transportable and conveys information to consumers. It is also relevant for marketing, which is of economic significance. Other types of food contact articles, such as storage containers, processing equipment and filling lines, are also important for food production and food supply. Food contact articles are made up of one or multiple different food contact materials and consist of food contact chemicals. However, food contact chemicals transfer from all types of food contact materials and articles into food and, consequently, are taken up by humans. Here we highlight topics of concern based on scientific findings showing that food contact materials and articles are a relevant exposure pathway for known hazardous substances as well as for a plethora of toxicologically uncharacterized chemicals, both intentionally and non-intentionally added. We describe areas of certainty, like the fact that chemicals migrate from food contact articles into food, and uncertainty, for example unidentified chemicals migrating into food. Current safety assessment of food contact chemicals is ineffective at protecting human health. In addition, society is striving for waste reduction with a focus on food packaging. As a result, solutions are being developed toward reuse, recycling or alternative (non-plastic) materials. However, the critical aspect of chemical safety is often ignored. Developing solutions for improving the safety of food contact chemicals and for tackling the circular economy must include current scientific knowledge. This cannot be done in isolation but must include all relevant experts and stakeholders. Therefore, we provide an overview of areas of concern and related activities that will improve the safety of food contact articles and support a circular economy. Our aim is to initiate a broader discussion involving scientists with relevant expertise but not currently working on food contact materials, and decision makers and influencers addressing single-use food packaging due to environmental concerns. Ultimately, we aim to support science-based decision making in the interest of improving public health. Notably, reducing exposure to hazardous food contact chemicals contributes to the prevention of associated chronic diseases in the human population.


Asunto(s)
Contaminación de Alimentos/análisis , Embalaje de Alimentos/métodos , Sustancias Peligrosas/efectos adversos , Humanos , Plásticos/efectos adversos
4.
Environ Sci Technol ; 48(18): 10919-28, 2014 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-25171099

RESUMEN

Widespread environmental antiandrogen contamination has been associated with negative impacts on biodiversity and human health. In particular, many pesticides are antiandrogenic, creating a need for robust and sensitive environmental monitoring. Our aim was to develop a sensitive and specific transgenic medaka (Oryzias latipes) model bearing an androgen responsive fluorescent reporter construct for whole organism-based environmental screening of pro- and antiandrogens. We analyzed the 5' regions of the androgen responsive three-spined stickleback (Gasterosteus aculeatus) spiggin genes in silico, revealing conserved blocks of sequence harboring androgen response elements. Identified putative promoters were cloned upstream of GFP. Germinal transgenesis with spg1-gfp led to stable medaka lines. GFP induction was exclusive to the kidney, the site of spiggin protein production in sticklebacks. Significant GFP expression was induced by three or four-day androgen treatment of newly hatched fry, but not by estrogens, mineralocorticoids, glucocorticoids or progestogens. The model responded dose-dependently to androgens, with highest sensitivity to 17MT (1.5 µg/L). In addition to flutamide, the biocides fenitrothion, vinclozolin and linuron significantly inhibited 17MT-induced GFP induction, validating the model for detection of antiandrogens. The spg1-gfp medaka model provides a sensitive, specific, and physiologically pertinent biosensor system for analyzing environmental androgen activity.


Asunto(s)
Antagonistas de Andrógenos/metabolismo , Proteínas de Peces/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Oryzias/metabolismo , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Clonación Molecular , Fluorescencia , Humanos , Datos de Secuencia Molecular , Oryzias/genética , Regiones Promotoras Genéticas/genética , Receptores Androgénicos/metabolismo , Smegmamorpha
5.
Mol Cell Endocrinol ; 583: 112125, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38147952

RESUMEN

With an increasing collective awareness of the rapid environmental changes, questions and theories regarding the adaptability of organisms are emerging. Global warming as well as chemical and non-chemical pollution have been identified as triggers of these adaptative changes, but can we link different kinds of stressors to certain phenotypic traits? The physiological adaptation, and particularly endocrine system adaptation, of living beings to urban environments is a fascinating way of studying urban endocrinology, which has emerged as a research field in 2007. In this paper, we stress how endocrine disruption in humans and environment can be studied in the urban environment by measuring the levels of pollution, endocrine activities or adversity. We broaden the focus to include not only exposure to the chemicals that have invaded our private spheres and their effects on wild and domestic species but also non-chemical effectors such as light, noise and climate change. We argue that taking into account the various urban stress factors and their effects on the endocrine system would enable the adoption of new approaches to protect living organisms.


Asunto(s)
Adaptación Fisiológica , Sistema Endocrino , Humanos
6.
J Neurosci ; 32(37): 12885-95, 2012 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-22973012

RESUMEN

Live imaging studies of the processes of demyelination and remyelination have so far been technically limited in mammals. We have thus generated a Xenopus laevis transgenic line allowing live imaging and conditional ablation of myelinating oligodendrocytes throughout the CNS. In these transgenic pMBP-eGFP-NTR tadpoles the myelin basic protein (MBP) regulatory sequences, specific to mature oligodendrocytes, are used to drive expression of an eGFP (enhanced green fluorescent protein) reporter fused to the Escherichia coli nitroreductase (NTR) selection enzyme. This enzyme converts the innocuous prodrug metronidazole (MTZ) to a cytotoxin. Using two-photon imaging in vivo, we show that pMBP-eGFP-NTR tadpoles display a graded oligodendrocyte ablation in response to MTZ, which depends on the exposure time to MTZ. MTZ-induced cell death was restricted to oligodendrocytes, without detectable axonal damage. After cessation of MTZ treatment, remyelination proceeded spontaneously, but was strongly accelerated by retinoic acid. Altogether, these features establish the Xenopus pMBP-eGFP-NTR line as a novel in vivo model for the study of demyelination/remyelination processes and for large-scale screens of therapeutic agents promoting myelin repair.


Asunto(s)
Enfermedades Desmielinizantes/patología , Enfermedades Desmielinizantes/fisiopatología , Modelos Animales de Enfermedad , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Regeneración Nerviosa/fisiología , Xenopus laevis/anatomía & histología , Xenopus laevis/fisiología , Animales , Humanos
7.
J Biol Chem ; 287(10): 7427-35, 2012 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-22232554

RESUMEN

Adult mammalian cells can be reprogrammed into induced pluripotent stem cells (iPSCs) by a limited combination of transcription factors. To date, most current iPSC generation protocols rely on viral vector usage in vitro, using cells removed from their physiological context. Such protocols are hindered by low derivation efficiency and risks associated with genome modifications of reprogrammed cells. Here, we reprogrammed cells in an in vivo context using non-viral somatic transgenesis in Xenopus tadpole tail muscle, a setting that provides long term expression of non-integrated transgenes in vivo. Expression of mouse mOct4, mSox2, and mKlf4 (OSK) led rapidly and reliably to formation of proliferating cell clusters. These clusters displayed the principal hallmarks of pluripotency: alkaline phosphatase activity, up-regulation of key epigenetic and chromatin remodeling markers, and reexpression of endogenous pluripotent markers. Furthermore, these clusters were capable of differentiating into derivatives of the three germ layers in vitro and into neurons and muscle fibers in vivo. As in situ reprogramming occurs along with muscle tissue repair, the data provide a link between these two processes and suggest that they act synergistically. Notably, every OSK injection resulted in cluster formation. We conclude that reprogramming is achievable in an anamniote model and propose that in vivo approaches could provide rapid and efficient alternative for non-viral iPSC production. The work opens new perspectives in basic stem cell research and in the longer term prospect of regenerative medicine protocols development.


Asunto(s)
Desdiferenciación Celular , Proliferación Celular , Factores de Transcripción de Tipo Kruppel/biosíntesis , Fibras Musculares Esqueléticas/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/biosíntesis , Factores de Transcripción SOXB1/biosíntesis , Animales , Expresión Génica , Técnicas de Transferencia de Gen , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Larva/citología , Larva/metabolismo , Ratones , Fibras Musculares Esqueléticas/citología , Factor 3 de Transcripción de Unión a Octámeros/genética , Factores de Transcripción SOXB1/genética , Xenopus laevis
8.
Proc Natl Acad Sci U S A ; 107(9): 4471-6, 2010 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-20160073

RESUMEN

The type 4 melanocortin receptor MC4R, a key relay in leptin signaling, links central energy control to peripheral reserve status. MC4R activation in different brain areas reduces food intake and increases energy expenditure. Mice lacking Mc4r are obese. Mc4r is expressed by hypothalamic paraventricular Thyrotropin-releasing hormone (TRH) neurons and increases energy usage through activation of Trh and production of the thyroid hormone tri-iodothyronine (T(3)). These facts led us to test the hypothesis that energy homeostasis should require negative feedback by T(3) on Mc4r expression. Quantitative PCR and in situ hybridization showed hyperthyroidism reduces Mc4r mRNA levels in the paraventricular nucleus. Comparative in silico analysis of Mc4r regulatory regions revealed two evolutionarily conserved potential negative thyroid hormone-response elements (nTREs). In vivo ChIP assays on mouse hypothalamus demonstrated association of thyroid hormone receptors (TRs) with a region spanning one nTRE. Further, in vivo gene reporter assays revealed dose-dependent T(3) repression of transcription from the Mc4r promoter in mouse hypothalamus, in parallel with T(3)-dependent Trh repression. Mutagenesis of the nTREs in the Mc4r promoter demonstrated direct regulation by T(3), consolidating the ChIP results. In vivo shRNA knockdown, TR over-expression approaches and use of mutant mice lacking specific TRs showed that both TRalpha and TRbeta contribute to Mc4r regulation. T(3) repression of Mc4r transcription ensures that the energy-saving effects of T(3) feedback on Trh are not overridden by MC4R activation of Trh. Thus parallel repression by T(3) on hypothalamic Mc4r and Trh contributes to energy homeostasis.


Asunto(s)
Retroalimentación , Hipotálamo/metabolismo , Receptor de Melanocortina Tipo 4/genética , Triyodotironina/fisiología , Animales , Inmunoprecipitación de Cromatina , Hibridación in Situ , Ratones , Ratones Noqueados , Reacción en Cadena de la Polimerasa , Hormona Liberadora de Tirotropina/genética , Hormona Liberadora de Tirotropina/fisiología
9.
Water Sci Technol ; 68(1): 261-8, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23823564

RESUMEN

Surface water receives a variety of micro-pollutants that could alter aquatic organisms' reproduction and development. It is known that a few nanograms per litre of these compounds can induce endocrine-disrupting effects in aquatic species. Many compounds are released daily in wastewater, and identifying the compounds responsible for inducing such disruption is difficult. Methods using biological analysis are therefore an alternative to chemical analysis, as the endocrine disruption potential of the stream as a whole is considered. To detect hormonal disruption of thyroid and oestrogenic functions, fluorescent Xenopus laevis tadpoles and medaka (Oryzias latipes) fish larvae bearing genetic constructs integrating hormonal responsive elements were used for physiological screens for potential endocrine disruption in streams from an urban wastewater treatment plant. The Xenopus model was used to assess thyroid disruption and the medaka model oestrogenic disruption in wastewater samples. Assays using the genetically modified organisms were conducted on 9 influent and 32 effluent samples. The thyroidal effect of wastewater was either reduced or removed by the treatment plant; no oestrogenic effect was detected in any of the wastewater samples.


Asunto(s)
Disruptores Endocrinos/toxicidad , Aguas Residuales/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Larva/efectos de los fármacos , Oryzias , Glándula Tiroides/efectos de los fármacos , Xenopus laevis
10.
Stem Cell Reports ; 18(2): 534-554, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36669492

RESUMEN

The adult rodent subventricular zone (SVZ) generates neural stem cells (NSCs) throughout life that migrate to the olfactory bulbs (OBs) and differentiate into olfactory interneurons. Few SVZ NSCs generate oligodendrocyte precursor cells (OPCs). We investigated how neurogliogenesis is regulated during aging in mice and in a non-human primate (NHP) model, the gray mouse lemur. In both species, neuronal commitment decreased with age, while OPC generation and myelin content unexpectedly increased. In the OBs, more tyrosine hydroxylase interneurons in old mice, but fewer in lemurs, marked a surprising interspecies difference that could relate to our observation of a continuous ventricle in lemurs. In the corpus callosum, aging promoted maturation of OPCs into mature oligodendrocytes in mice but blocked it in lemurs. The present study highlights similarities and dissimilarities between rodents and NHPs, revealing that NHPs are a more relevant model than mice to study the evolution of biomarkers of aging.


Asunto(s)
Cheirogaleidae , Lemur , Células-Madre Neurales , Animales , Ventrículos Laterales , Vaina de Mielina , Células-Madre Neurales/fisiología , Oligodendroglía/fisiología , Diferenciación Celular/fisiología
11.
Environ Int ; 172: 107770, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36706583

RESUMEN

Neural stem cells in the murine subventricular zone (SVZ) reactivate during postnatal development to generate neurons and glia throughout adulthood. We previously demonstrated that a postnatal thyroid hormone (TH) peak orchestrates this remodelling, rendering this process vulnerable to endocrine disruption. We exposed mice to 2 or 200 µg/kg bw/day of the bisphenol A-replacement and suspected TH-disruptor bisphenol F (BPF) in the drinking water, from embryonic day 15 to postnatal day 21 (P21). In parallel, one group was exposed to the TH-synthesis blocker propylthiouracil (0.15 % PTU). In contrast to PTU, BPF exposure did not affect serum TH levels at P15, P21 or P60. RNA-seq on dissected SVZs at P15 revealed dysregulated neurodevelopmental genes in all treatments, although few overlapped amongst the conditions. We then investigated the phenotype at P60 to analyse long-term consequences of transient developmental exposure. As opposed to hypothyroid conditions, and despite dysregulated oligodendrogenesis-promoting genes in the P15 SVZ exposed to the highest dose of BPF, immunostainings for myelin and OLIG2/CC1 showed no impact on global myelin content nor oligodendrocyte maturation in the P60 corpus callosum, apart from a reduced thickness. The highest dose did reduce numbers of newly generated SVZ-neuroblasts with 22 %. Related to this were behavioural alterations. P60 mice previously exposed to the highest BPF dose memorized an odour less well than control animals did, although they performed better than PTU-exposed animals. All mice could discriminate new odours, but all exposed groups showed less interest in social odours. Our data indicate that perinatal exposure to low doses of BPF disrupts postnatal murine SVZ remodelling, and lowers the adult neuron/oligodendroglia output, even after exposure had been absent for 40 days. These anomalies warrant further investigation on the potential harm of alternative bisphenol compounds for human foetal brain development.


Asunto(s)
Células-Madre Neurales , Embarazo , Femenino , Animales , Ratones , Adulto , Humanos , Neuronas , Compuestos de Bencidrilo/toxicidad , Fenoles/toxicidad , Hormonas Tiroideas
12.
Proc Natl Acad Sci U S A ; 106(29): 11913-8, 2009 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-19571007

RESUMEN

Steroid hormones regulate many physiological processes in vertebrates, nematodes, and arthropods through binding to nuclear receptors (NR), a metazoan-specific family of ligand-activated transcription factors. The main steps controlling the diversification of this family are now well-understood. In contrast, the origin and evolution of steroid ligands remain mysterious, although this is crucial for understanding the emergence of modern endocrine systems. Using a comparative genomic approach, we analyzed complete metazoan genomes to provide a comprehensive view of the evolution of major enzymatic players implicated in steroidogenesis at the whole metazoan scale. Our analysis reveals that steroidogenesis has been independently elaborated in the 3 main bilaterian lineages, and that steroidogenic cytochrome P450 enzymes descended from those that detoxify xenobiotics.


Asunto(s)
Evolución Molecular , Hormonas/metabolismo , Transducción de Señal , Esteroides/metabolismo , Animales , Sistema Enzimático del Citocromo P-450/genética , Duplicación de Gen , Ligandos , Funciones de Verosimilitud , Modelos Genéticos , Oxidorreductasas/genética , Filogenia , Especificidad de la Especie , Vertebrados/genética
13.
Stem Cell Reports ; 17(3): 459-474, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35120623

RESUMEN

Neural stem cells (NSCs) in the adult brain are a source of neural cells for brain injury repair. We investigated whether their capacity to generate new neurons and glia is determined by thyroid hormone (TH) during development because serum levels peak during postnatal reorganization of the main NSC niche, the subventricular zone (SVZ). Re-analysis of mouse transcriptome data revealed increased expression of TH transporters and deiodinases in postnatal SVZ NSCs, promoting local TH action, concomitant with a burst in neurogenesis. Inducing developmental hypothyroidism reduced NSC proliferation, disrupted expression of genes implicated in NSC determination and TH signaling, and altered the neuron/glia output in newborns. Three-month-old adult mice recovering from developmental hypothyroidism had fewer olfactory interneurons and underperformed on short-memory odor tests, dependent on SVZ neurogenesis. Our data provide readouts permitting comparison with adverse long-term events following thyroid disruptor exposure and ideas regarding the etiology of prevalent neurodegenerative diseases in industrialized countries.


Asunto(s)
Hipotiroidismo , Ventrículos Laterales , Animales , Diferenciación Celular , Hipotiroidismo/metabolismo , Ventrículos Laterales/metabolismo , Ratones , Neurogénesis/genética , Neuroglía/metabolismo , Hormonas Tiroideas/metabolismo
14.
J Toxicol Environ Health B Crit Rev ; 14(5-7): 423-48, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21790320

RESUMEN

The obesogen concept proposes that environmental contaminants may be contributing to the epidemic of obesity and its related pathology, metabolic disorder. The first references to such a notion appeared at the beginning of the current decade, with the hypothesis that the correlation between increasing incidence of obesity and enhanced industrial chemical production was not simply coincidental, but potentially causally related. The next event was the introduction of the term "obesogen" as representing an environmental pollutant that adversely affects various aspects of adipose tissue functions. More recently, the concept was extended to include substances that may modify metabolic balance at the central, hypothalamic level. The actions of two prime candidate obesogens, tributyltin (TBT) and tetrabromobisphenol A (TBBPA), acting at the central level are the main focus of this review. Having discussed the evidence for contaminant accumulation in the environment and in human tissues and the potential mechanisms of action, data are provided showing that these two widespread pollutants modify hypothalamic gene regulations. Our studies are based on maternal exposure and measurement of effects in the progeny, mainly based on in vivo gene reporter assays. Such models are obviously pertinent to testing current hypotheses that propose that early exposure might exert effects on later development and physiological functions. The potential molecular mechanisms involved are discussed, as are the broader physiological consequences of these hypothalamic dysregulations.


Asunto(s)
Contaminantes Ambientales/toxicidad , Hipotálamo/efectos de los fármacos , Obesidad/inducido químicamente , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Animales , Disruptores Endocrinos/toxicidad , Exposición a Riesgos Ambientales/efectos adversos , Femenino , Humanos , Hipotálamo/metabolismo , Enfermedades Metabólicas/inducido químicamente , Bifenilos Polibrominados/toxicidad , Embarazo , Efectos Tardíos de la Exposición Prenatal , Compuestos de Trialquiltina/toxicidad
15.
Vitam Horm ; 116: 133-192, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33752817

RESUMEN

Thyroid hormone (TH) signaling, a highly conserved pathway across vertebrates, is crucial for brain development and function throughout life. In the adult mammalian brain, including that of humans, multipotent neural stem cells (NSCs) proliferate and generate neuronal and glial progenitors. The role of TH has been intensively investigated in the two main neurogenic niches of the adult mouse brain, the subventricular and the subgranular zone. A key finding is that T3, the biologically active form of THs, promotes NSC commitment toward a neuronal fate. In this review, we first discuss the roles of THs in the regulation of adult rodent neurogenesis, as well as how it relates to functional behavior, notably olfaction and cognition. Most research uncovering these roles of TH in adult neurogenesis was conducted in rodents, whose genetic background, brain structure and rate of neurogenesis are considerably different from that of humans. To bridge the phylogenetic gap, we also explore the similarities and divergences of TH-dependent adult neurogenesis in non-human primate models. Lastly, we examine how photoperiodic length changes TH homeostasis, and how that might affect adult neurogenesis in seasonal species to increase fitness. Several aspects by which TH acts on adult NSCs seem to be conserved among mammals, while we only start to uncover the molecular pathways, as well as how other in- and extrinsic factors are intertwined. A multispecies approach delivering more insights in the matter will pave the way for novel NSC-based therapies to combat neurological disorders.


Asunto(s)
Células-Madre Neurales , Roedores , Animales , Ratones , Neurogénesis/fisiología , Filogenia , Primates/metabolismo , Roedores/metabolismo , Hormonas Tiroideas/fisiología
16.
Stem Cell Reports ; 16(2): 337-353, 2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33450189

RESUMEN

Adult neural stem cell (NSC) generation in vertebrate brains requires thyroid hormones (THs). How THs enter the NSC population is unknown, although TH availability determines proliferation and neuronal versus glial progenitor determination in murine subventricular zone (SVZ) NSCs. Mice display neurological signs of the severely disabling human disease, Allan-Herndon-Dudley syndrome, if they lack both MCT8 and OATP1C1 transporters, or MCT8 and deiodinase type 2. We analyzed the distribution of MCT8 and OATP1C1 in adult mouse SVZ. Both are strongly expressed in NSCs and at a lower level in neuronal cell precursors but not in oligodendrocyte progenitors. Next, we analyzed Mct8/Oatp1c1 double-knockout mice, where brain uptake of THs is strongly reduced. NSC proliferation and determination to neuronal fates were severely affected, but not SVZ-oligodendroglial progenitor generation. This work highlights how tight control of TH availability determines NSC function and glial-neuron cell-fate choice in adult brains.


Asunto(s)
Encéfalo/metabolismo , Ventrículos Laterales/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Células-Madre Neurales/fisiología , Células Precursoras de Oligodendrocitos/metabolismo , Proteínas de Transporte de Catión Orgánico/metabolismo , Simportadores/metabolismo , Hormonas Tiroideas/metabolismo , Células Madre Adultas/metabolismo , Animales , Transporte Biológico , Diferenciación Celular , Proliferación Celular , Ratones , Ratones Noqueados , Transportadores de Ácidos Monocarboxílicos/genética , Proteínas de Transporte de Catión Orgánico/genética , Simportadores/genética
17.
Environ Pollut ; 285: 117654, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34289950

RESUMEN

North-Eastern Brazil saw intensive application of the insecticide pyriproxyfen (PPF) during the microcephaly outbreak caused by the Zika virus (ZIKV). ZIKV requires the neural RNA-binding protein Musashi-1 to replicate. Thyroid hormone (TH) represses MSI1. PPF is a suspected TH disruptor. We hypothesized that co-exposure to the main metabolite of PPF, 4'-OH-PPF, could exacerbate ZIKV effects through increased MSI1 expression. Exposing an in vivo reporter model, Xenopus laevis, to 4'-OH-PPF decreased TH signaling and increased msi1 mRNA and protein, confirming TH-antagonistic properties. Next, we investigated the metabolite's effects on mouse subventricular zone-derived neural stem cells (NSCs). Exposure to 4'-OH-PPF dose-dependently reduced neuroprogenitor proliferation and dysregulated genes implicated in neurogliogenesis. The highest dose induced Msi1 mRNA and protein, increasing cell apoptosis and the ratio of neurons to glial cells. Given these effects of the metabolite alone, we considered if combined infection with ZIKV worsened neurogenic events. Only at the fourth and last day of incubation did co-exposure of 4'-OH-PPF and ZIKV decrease viral replication, but viral RNA copies stayed within the same order of magnitude. Intracellular RNA content of NSCs was decreased in the combined presence of 4'-OH-PPF and ZIKV, suggesting a synergistic block of transcriptional machinery. Seven out of 12 tested key genes in TH signaling and neuroglial commitment were dysregulated by co-exposure, of which four were unaltered when exposed to 4'-OH-PPF alone. We conclude that 4'-OH-PPF is an active TH-antagonist, altering NSC processes known to underlie correct cortical development. A combination of the TH-disrupting metabolite and ZIKV could aggravate the microcephaly phenotype.


Asunto(s)
Células-Madre Neurales , Infección por el Virus Zika , Virus Zika , Animales , Ratones , Piridinas , Hormonas Tiroideas
18.
Artículo en Inglés | MEDLINE | ID: mdl-32477268

RESUMEN

Monocarboxylate transporter 8 (MCT8) deficiency or the Allan-Herndon-Dudley Syndrome (AHDS) is an X-linked psychomotor disability syndrome with around 320 clinical cases described worldwide. SLC16A2 gene mutations, encoding the thyroid hormone (TH) transporter MCT8, result in intellectual disability due to impaired TH uptake in the developing brain. MCT8 deficiency is a multi-organ affecting disease with a predominant neuronal cell-based pathology, with the glial component inadequately investigated. However, deficiency in myelin, a key component of white matter (WM) enabling fast nerve conduction, is a TH-dependent hallmark of the disease. Nevertheless, analysis of the myelin status in AHDS patients has led to conflicting interpretations. The majority of individual case studies reported delayed myelination, that was restored later in life. In contrast, post-mortem studies and high-resolution MRIs detected WM (micro-) abnormalities throughout adolescence, suggesting permanent hypomyelination. Thus, interpretations vary depending on methodology to investigate WM microstructure. Further, it is unknown whether the mutation within the MCT8 is linked to the severity of the myelin deficiency. Consequently, terminology is inconsistent among reports, and AHDS is occasionally misdiagnosed as another WM disorder. The evolutionary conserved TH signaling pathway that promotes the generation of myelinating oligodendrocytes enabled deciphering how the lack of MCT8 might affect myelinogenesis. Linking patient findings on myelination to those obtained from models of MCT8 deficiency revealed underlying pathophysiological mechanisms, but knowledge gaps remain, notably how myelination progresses both spatially and temporally in MCT8 deficiency. This limits predicting how myelin integrity might benefit therapeutically, and when to initiate. A recurrent observation in clinical trials is the absence of neurological improvement. Testing MCT8-independent thyromimetics in models, and evaluating treatments used in other demyelinating diseases, despite different etiologies, is crucial to propose new therapeutic strategies combatting this devastating disease.


Asunto(s)
Enfermedades Desmielinizantes/patología , Discapacidad Intelectual Ligada al Cromosoma X/complicaciones , Transportadores de Ácidos Monocarboxílicos/deficiencia , Hipotonía Muscular/complicaciones , Atrofia Muscular/complicaciones , Animales , Enfermedades Desmielinizantes/etiología , Humanos
19.
Front Neurosci ; 14: 875, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32982671

RESUMEN

Neurodegenerative diseases are characterized by chronic neuronal and/or glial cell loss, while traumatic injury is often accompanied by the acute loss of both. Multipotent neural stem cells (NSCs) in the adult mammalian brain spontaneously proliferate, forming neuronal and glial progenitors that migrate toward lesion sites upon injury. However, they fail to replace neurons and glial cells due to molecular inhibition and the lack of pro-regenerative cues. A major challenge in regenerative biology therefore is to unveil signaling pathways that could override molecular brakes and boost endogenous repair. In physiological conditions, thyroid hormone (TH) acts on NSC commitment in the subventricular zone, and the subgranular zone, the two largest NSC niches in mammals, including humans. Here, we discuss whether TH could have beneficial actions in various pathological contexts too, by evaluating recent data obtained in mammalian models of multiple sclerosis (MS; loss of oligodendroglial cells), Alzheimer's disease (loss of neuronal cells), stroke and spinal cord injury (neuroglial cell loss). So far, TH has shown promising effects as a stimulator of remyelination in MS models, while its role in NSC-mediated repair in other diseases remains elusive. Disentangling the spatiotemporal aspects of the injury-driven repair response as well as the molecular and cellular mechanisms by which TH acts, could unveil new ways to further exploit its pro-regenerative potential, while TH (ant)agonists with cell type-specific action could provide safer and more target-directed approaches that translate easier to clinical settings.

20.
Lancet Diabetes Endocrinol ; 8(8): 719-730, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32707119

RESUMEN

Endocrine-disrupting chemicals (EDCs) substantially cost society as a result of increases in disease and disability but-unlike other toxicant classes such as carcinogens-have yet to be codified into regulations as a hazard category. This Series paper examines economic, regulatory, and policy approaches to limit human EDC exposures and describes potential improvements. In the EU, general principles for EDCs call for minimisation of human exposure, identification as substances of very high concern, and ban on use in pesticides. In the USA, screening and testing programmes are focused on oestrogenic EDCs exclusively, and regulation is strictly risk-based. Minimisation of human exposure is unlikely without a clear overarching definition for EDCs and relevant pre-marketing test requirements. We call for a multifaceted international programme (eg, modelled on the International Agency for Research in Cancer) to address the effects of EDCs on human health-an approach that would proactively identify hazards for subsequent regulation.


Asunto(s)
Disruptores Endocrinos/economía , Exposición a Riesgos Ambientales/economía , Exposición a Riesgos Ambientales/legislación & jurisprudencia , Contaminantes Ambientales/economía , Política de Salud/economía , Política de Salud/legislación & jurisprudencia , Disruptores Endocrinos/efectos adversos , Exposición a Riesgos Ambientales/efectos adversos , Contaminantes Ambientales/efectos adversos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA