Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Drug Dev Res ; 85(3): e22194, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38704828

RESUMEN

The aim the present study was to investigate the impact of novel pentavalent organobismuth and organoantimony complexes on membrane integrity and their interaction with DNA, activity against Sb(III)-sensitive and -resistant Leishmania strains and toxicity in mammalian peritoneal macrophages. Ph3M(L)2 type complexes were synthesized, where M = Sb(V) or Bi(V) and L = deprotonated 3-(dimethylamino)benzoic acid or 2-acetylbenzoic acid. Both organobismuth(V) and organoantimony(V) complexes exhibited efficacy at micromolar concentrations against Leishmania amazonensis and L. infantum but only the later ones demonstrated biocompatibility. Ph3Sb(L1)2 and Ph3Bi(L1)2 demonstrated distinct susceptibility profiles compared to inorganic Sb(III)-resistant strains of MRPA-overexpressing L. amazonensis and AQP1-mutated L. guyanensis. These complexes were able to permeate the cell membrane and interact with the Leishmania DNA, suggesting that this effect may contribute to the parasite growth inhibition via apoptosis. Taken altogether, our data substantiate the notion of a distinct mechanism of uptake pathway and action in Leishmania for these organometallic complexes, distinguishing them from the conventional inorganic antimonial drugs.


Asunto(s)
Antimonio , Antiprotozoarios , Membrana Celular , Resistencia a Medicamentos , Compuestos Organometálicos , Antimonio/farmacología , Antimonio/química , Animales , Compuestos Organometálicos/farmacología , Ratones , Membrana Celular/efectos de los fármacos , Antiprotozoarios/farmacología , Macrófagos Peritoneales/efectos de los fármacos , Macrófagos Peritoneales/parasitología , Leishmania/efectos de los fármacos , ADN Protozoario , Leishmania infantum/efectos de los fármacos , Leishmania infantum/genética , Ratones Endogámicos BALB C
2.
J Liposome Res ; 31(2): 169-176, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32228210

RESUMEN

Leishmaniasis is a parasitic disease treatable and curable, however, the chemotherapeutic agents for their treatment are limited. In South American countries, pentavalent antimonials are still the first line of treatment for cutaneous leishmaniasis with an efficacy of about 75%, but the toxicity of the drug causes serious side effects and remains as the main obstacle for treatment. New knowledge aimed to improve drug delivery into the intracellular environment is essential, especially for drugs currently used in the clinic, to develop new anti-Leishmania formulations. In the present study, we analysed the scientific literature to highlight the progress achieved in the last decade regarding the use of nanotechnology for improving the current leishmaniasis treatments. Results allowed us to conclude that the encapsulated Glucantime liposomal formulation can be improved by means of nanoparticle functionalization processes, resulting in new drug delivery systems that can be potentially proposed as alternative therapies for leishmaniasis treatment.


Asunto(s)
Antiprotozoarios , Leishmaniasis Cutánea , Leishmaniasis , Nanopartículas , Antiprotozoarios/uso terapéutico , Sistemas de Liberación de Medicamentos , Humanos , Leishmaniasis/tratamiento farmacológico , Leishmaniasis Cutánea/tratamiento farmacológico , Liposomas/uso terapéutico
3.
Artículo en Inglés | MEDLINE | ID: mdl-32284386

RESUMEN

The treatment of dogs naturally infected with Leishmania infantum using meglumine antimoniate (MA) encapsulated in conventional liposomes (LC) in association with allopurinol has been previously reported to promote a marked reduction in the parasite burden in the main infection sites. Here, a new assay in naturally infected dogs was performed using a novel liposome formulation of MA consisting of a mixture of conventional and long-circulating (PEGylated) liposomes (LCP), with expected broader distribution among affected tissues of the mononuclear phagocyte system. Experimental groups of naturally infected dogs were as follows: LCP plus Allop, receiving LCP intravenously as 2 cycles of 6 doses (6.5 mg Sb/kg of body weight/dose) at 4-day intervals plus allopurinol at 30 mg/kg/12 h per os (p.o.) during 130 days (LCP+Allop); LC plus Allop, receiving LC intravenously as 2 cycles of 6 doses (6.5 mg Sb/kg/dose) plus allopurinol during 130 days (LC+Allop); Allop, treated with allopurinol only; and a nontreated control. Parasite loads were evaluated by quantitative PCR in liver, spleen, and bone marrow tissue and by immunohistochemistry in the ear skin, before treatment, just after treatment, and 4 months later. The LCP+Allop and LC+Allop groups, but not the Allop group, showed significant suppression of the parasites in the liver, spleen, and bone marrow 4 months after treatment compared to the pretreatment period or the control group. Only LCP+Allop group showed significantly lower parasite burden in the skin in comparison to the control group. On the basis of clinical staging and parasitological evaluations, the LCP formulation exhibited a more favorable therapeutic profile than the LC one, being therefore promising for the treatment of canine visceral leishmaniasis.


Asunto(s)
Antiprotozoarios , Enfermedades de los Perros , Leishmania infantum , Leishmaniasis Visceral , Compuestos Organometálicos , Alopurinol/uso terapéutico , Animales , Antiprotozoarios/uso terapéutico , Enfermedades de los Perros/tratamiento farmacológico , Perros , Leishmaniasis Visceral/tratamiento farmacológico , Leishmaniasis Visceral/veterinaria , Liposomas/uso terapéutico , Meglumina/uso terapéutico , Antimoniato de Meglumina/uso terapéutico , Compuestos Organometálicos/uso terapéutico , Polietilenglicoles/uso terapéutico
4.
Parasitol Res ; 118(10): 3077-3084, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31401656

RESUMEN

Clinically available drugs for mucocutaneous and cutaneous leishmaniases (CL) include mainly pentavalent antimony (Sb(V)) complexes, liposomal amphotericin B, and miltefosine (HePC). However, they present at least one of the following limitations: long-term parenteral administration through repeated doses, severe side effects, drug resistance, and high cost. HePC is the only oral drug available, but the appearance of resistance has resulted in changes of its use from monotherapy to combination therapy. Amphiphilic Sb(V) complexes, such as SbL8 obtained from reaction of Sb(V) with N-octanoyl-N-methylglucamide, were recently found to be orally active against experimental CL. The property of SbL8 to self-assemble in aqueous solution, forming nanostructures, led us to investigate the incorporation of HePC into SbL8 nanoassemblies and the therapeutic efficacy of SbL8/HePC nanoformulation by oral route in a murine model of CL. HePC incorporation into the SbL8 nanosystem was evidenced by using a fluorescent analog of HePC. The antileishmanial activity of SbL8/HePC nanoassemblies was evaluated after daily oral administration for 30 days in Leishmania amazonensis-infected BALB/c mice, in comparison with monotherapies (SbL8 or HePC) and saline control. All the treatments resulted in significant reduction in the lesion size growth, when compared with control. Strikingly, only SbL8/HePC nanoassemblies promoted a significant decrease of the parasite burden in the lesion. This work establishes the therapeutic benefit of SbL8/HePC association by oral route in a CL model and constitutes an important step towards the development of new orally active drug combination.


Asunto(s)
Antimonio/química , Antiprotozoarios/administración & dosificación , Leishmania mexicana/efectos de los fármacos , Leishmaniasis Cutánea/tratamiento farmacológico , Fosforilcolina/análogos & derivados , Administración Oral , Animales , Antimonio/administración & dosificación , Antiprotozoarios/química , Modelos Animales de Enfermedad , Femenino , Leishmaniasis Cutánea/parasitología , Ratones Endogámicos BALB C , Nanopartículas/administración & dosificación , Nanopartículas/química , Fosforilcolina/administración & dosificación , Fosforilcolina/química
5.
Artículo en Inglés | MEDLINE | ID: mdl-29866873

RESUMEN

Progress toward the improvement of meglumine antimoniate (MA), commercially known as Glucantime, a highly effective but also toxic antileishmanial drug, has been hindered by the lack of knowledge and control of its chemical composition. Here, MA was manipulated chemically with the aim of achieving an orally effective drug. MA compounds were synthesized from either antimony pentachloride (MA-SbCl5) or potassium hexahydroxyantimonate [MA-KSb(OH)6] and prepared under a low polymerization state. These compounds were compared to Glucantime regarding chemical composition, permeation properties across a cellulose membrane and Caco-2 cell monolayer, and uptake by peritoneal macrophages. MA-SbCl5 and MA-KSb(OH)6 were characterized as less polymerized and more permeative 2:2 Sb-meglumine complexes than Glucantime, which consisted of a mixture of 2:3 and 3:3 Sb-meglumine complexes. The antileishmanial activities and hepatic uptake of all compounds were evaluated after oral administration in BALB/c mice infected with Leishmania infantum chagasi, as a model of visceral leishmaniasis (VL). The synthetic MA compounds given at 300 mg Sb/kg of body weight/12 h for 30 days significantly reduced spleen and liver parasite burdens, in contrast to those for Glucantime at the same dose. The greater activity of synthetic compounds could be attributed to their higher intestinal absorption and accumulation efficiency in the liver. MA-SbCl5 given orally was as efficacious as Glucantime by the parenteral route (80 mg Sb/kg/24 h intraperitoneally). These data taken together suggest that treatment with a less-polymerized form of MA by the oral route may be effective for the treatment of VL.


Asunto(s)
Leishmaniasis Visceral/tratamiento farmacológico , Antimoniato de Meglumina/uso terapéutico , Administración Oral , Animales , Células CACO-2 , Modelos Animales de Enfermedad , Femenino , Humanos , Antimoniato de Meglumina/administración & dosificación , Antimoniato de Meglumina/química , Ratones , Ratones Endogámicos BALB C , Polimerizacion
6.
Antimicrob Agents Chemother ; 60(8): 4482-9, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27161624

RESUMEN

Antimony (Sb) resistance in leishmaniasis chemotherapy has become one of the major challenges to the control of this spreading worldwide public health problem. Since the plasma membrane pore-forming protein aquaglyceroporin 1 (AQP1) is the major route of Sb uptake in Leishmania, functional studies are relevant to characterize drug transport pathways in the parasite. We generated AQP1-overexpressing Leishmania guyanensis and L. braziliensis mutants and investigated their susceptibility to the trivalent form of Sb (Sb(III)) in the presence of silver and nitrate salts. Both AQP1-overexpressing lines presented 3- to 4-fold increased AQP1 expression levels compared with those of their untransfected counterparts, leading to an increased Sb(III) susceptibility of about 2-fold. Competition assays using silver nitrate, silver sulfadiazine, or silver acetate prior to Sb(III) exposure increased parasite growth, especially in AQP1-overexpressing mutants. Surprisingly, Sb(III)-sodium nitrate or Sb(III)-potassium nitrate combinations showed significantly enhanced antileishmanial activities compared to those of Sb(III) alone, especially against AQP1-overexpressing mutants, suggesting a putative nitrate-dependent modulation of AQP1 activity. The intracellular level of antimony quantified by graphite furnace atomic absorption spectrometry showed that the concomitant exposure to Sb(III) and nitrate favors antimony accumulation in the parasite, increasing the toxicity of the drug and culminating with parasite death. This is the first report showing evidence of AQP1-mediated Sb(III) susceptibility modulation by silver in Leishmania and suggests the potential antileishmanial activity of the combination of nitrate salts and Sb(III).


Asunto(s)
Antimonio/farmacología , Antiprotozoarios/farmacología , Leishmania/efectos de los fármacos , Nitratos/farmacología , Plata/farmacología , Leishmania/genética , Leishmania/metabolismo , Leishmania braziliensis/efectos de los fármacos , Leishmania braziliensis/genética , Leishmania braziliensis/metabolismo , Pruebas de Sensibilidad Parasitaria , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo
7.
J Biol Inorg Chem ; 20(5): 771-9, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25929728

RESUMEN

Two bismuth(III) porphyrins-5,10,15,20-tetrakis(phenyl)porphyrinatobismuth(III) nitrate, [Bi(III)(TPP)]NO3, and the unprecedent 5,10,15,20-tetrakis(4-carbomethoxyphenyl)porphyrinatobismuth(III) nitrate, [Bi(III)(T4CMPP)]NO3, and two unprecedented antimony(V) porphyrins dichlorido(5,10,15,20-tetrakis(phenyl)porphyrinato)antimony(V) bromide, [Sb(V)(TPP)Cl2]Br, and dibromido(5,10,15,20-tetrakis(4-carbomethoxyphenyl)porphyrinato)antimony(V) bromide, [Sb(V)(T4CMPP)Br2]Br,-were synthesized by reacting the corresponding porphyrin ligand with Bi(NO3)3·5H2O or SbCl3. All compounds were characterized by UV-vis, (1)H NMR spectroscopy, and mass spectrometry. The new compounds were also characterized by elemental analysis. Because antimony and bismuth compounds have been widely applied in medicine, the activity of these complexes was tested against Sb-sensitive and -resistant Leishmania amazonensis parasites. [Sb(V)(T4CMPP)Br2]Br was more active against the promastigote form of Sb-resistant mutant strain as compared to the sensitive parental strain, with IC50 in the micromolar range. These data contrasted with those obtained using the Sb(III) drug potassium antimony tartrate, which displayed IC50 of 110 µmol L(-1) against the Sb-sensitive parasite and was almost inactive against the Sb-resistant strain. The H2T4CMPP ligand also showed antileishmanial activity against Sb-resistant and -sensitive strains, but with IC50 at least tenfold greater than that of the complex. The Sb(V)-porphyrin complex was also active against intracellular amastigotes and showed a higher selectivity index than the conventional Sb(V) drug glucantime, in both Sb-sensitive and -resistant strains. The greater antileishmanial activity of this complex could be attributed to an increased cellular uptake of Sb. Thus, [Sb(V)(T4CMPP)Br2]Br constitutes a new antileishmanial drug candidate.


Asunto(s)
Antimonio/química , Antiprotozoarios/farmacología , Bismuto/química , Farmacorresistencia Microbiana/efectos de los fármacos , Leishmania/efectos de los fármacos , Metaloporfirinas/farmacología , Antimonio/farmacología , Antiprotozoarios/síntesis química , Antiprotozoarios/química , Relación Dosis-Respuesta a Droga , Leishmania/crecimiento & desarrollo , Metaloporfirinas/síntesis química , Metaloporfirinas/química , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Relación Estructura-Actividad
8.
Antimicrob Agents Chemother ; 58(1): 481-8, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24189251

RESUMEN

Pentavalent antimonial drugs such as meglumine antimoniate (Glucantime [Glu; Sanofi-Aventis, São Paulo, Brazil]) produce severe side effects, including cardiotoxicity and hepatotoxicity, during the treatment of leishmaniasis. We evaluated the role of residual Sb(III) in the hepatotoxicity of meglumine antimoniate, as well as the protective effect of the antioxidant ascorbic acid (AA) during antimonial chemotherapy in a murine model of visceral leishmaniasis. BALB/c mice infected with Leishmania infantum were treated intraperitoneally at 80 mg of Sb/kg/day with commercial meglumine antimoniate (Glu) or a synthetic meglumine antimoniate with lower Sb(III) level (MA), in association or not with AA (15 mg/kg/day), for a 20-day period. Control groups received saline or saline plus AA. Livers were evaluated for hepatocytes histological alterations, peroxidase activity, and apoptosis. Increased proportions of swollen and apoptotic hepatocytes were observed in animals treated with Glu compared to animals treated with saline or MA. The peroxidase activity was also enhanced in the liver of animals that received Glu. Cotreatment with AA reduced the extent of histological changes, the apoptotic index, and the peroxidase activity to levels corresponding to the control group. Moreover, the association with AA did not affect the hepatic uptake of Sb and the ability of Glu to reduce the liver and spleen parasite loads in infected mice. In conclusion, our data supports the use of pentavalent antimonials with low residue of Sb(III) and the association of pentavalent antimonials with AA, as effective strategies to reduce side effects in antimonial therapy.


Asunto(s)
Ácido Ascórbico/uso terapéutico , Hígado/efectos de los fármacos , Meglumina/efectos adversos , Meglumina/uso terapéutico , Compuestos Organometálicos/efectos adversos , Compuestos Organometálicos/uso terapéutico , Animales , Femenino , Leishmaniasis Visceral/tratamiento farmacológico , Antimoniato de Meglumina , Ratones , Ratones Endogámicos BALB C
9.
Molecules ; 19(5): 5478-89, 2014 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-24786687

RESUMEN

Previous studies have shown that the association of the drug meglumine antimoniate (MA) with ß-cyclodextrin can improve its bioavailability by the oral route. In this work, ribose and maltose were investigated for their ability to form mixed or association complexes with MA, release MA and modulate the serum levels of Sb after oral administration in mice. Analysis of the MA/ribose composition by high performance liquid chromatography coupled to mass spectrometry (LCMS-IT-TOF) revealed the presence of mixed meglumine-Sb-ribose and Sb-ribose complexes. Analysis of the MA/maltose composition suggested the formation of MA-maltose association compounds. Circular dichroism characterization of these compositions following dilution in water at 37 °C suggested a partial and slow dissociation of the association compounds. When the MA/ribose composition was administered orally and compared to MA, the serum concentration of Sb was significantly lower after 1 h and greater after 3 h. On the other hand, the MA/maltose composition showed similar serum Sb concentration after 1 h and higher level of Sb after 3 h, when compared to MA. In conclusion, the present study has demonstrated the formation of mixed or association complexes of MA with sugars, such as maltose and ribose, which promoted sustained serum level of Sb after oral administration.


Asunto(s)
Antimonio/administración & dosificación , Disponibilidad Biológica , Carbohidratos/administración & dosificación , Administración Oral , Animales , Antimonio/química , Carbohidratos/química , Dicroismo Circular , Ciclodextrinas , Humanos , Meglumina/administración & dosificación , Meglumina/química , Antimoniato de Meglumina , Ratones , Compuestos Organometálicos/administración & dosificación , Compuestos Organometálicos/química
10.
Molecules ; 19(5): 6009-30, 2014 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-24824136

RESUMEN

Two novel organoantimony(V) and two organobismuth(V) complexes of the type ML2 were synthesized, with L = acetylsalicylic acid (HL1) or 3-acetoxybenzoic acid (HL2) and M = triphenylantimony(V) (M1) or triphenylbismuth(V) (M2). Complexes, [M1(L1)2] (1), [M1(L2)2]∙CHCl3 (2), [M2(L1)2], (3) and [M2(L2)2] (4), were characterized by elemental analysis, IR and NMR. Crystal structures of triphenylantimony(V) dicarboxylate complexes 1 and 2 were determined by single crystal X-ray diffraction. Structural analyses revealed that 1 and 2 adopt five-coordinated extremely distorted trigonal bipyramidal geometries, binding with three phenyl groups in the equatorial position and two deprotonated organic ligands (L) in the axial sites. The metal complexes, their metal salts and ligands were evaluated in vitro for their activities against Leishmania infantum and amazonensis promastigotes and Staphylococcus aureus and Pseudomonas aeruginosa bacteria. Both the metal complexes showed antileishmanial and antibacterial activities but the bismuth complexes were the most active. Intriguingly, complexation of organobismuth(V) salt reduced its activity against Leishmania, but increased it against bacteria. In vitro cytotoxic test of these complexes against murine macrophages showed that antimony(V) complexes were the least toxic. Considering the selectivity indexes, organoantimony(V) complexes emerge as the most promising antileishmanial agents and organobismuth(V) complex 3 as the best antibacterial agent.


Asunto(s)
Antibacterianos/farmacología , Antimonio/farmacología , Ácido Benzoico/farmacología , Compuestos Organometálicos/farmacología , Compuestos de Terfenilo/farmacología , Animales , Antibacterianos/síntesis química , Antibacterianos/química , Antimonio/química , Ácido Benzoico/síntesis química , Ácido Benzoico/química , Leishmania infantum/efectos de los fármacos , Ligandos , Macrófagos/efectos de los fármacos , Ratones , Compuestos Organometálicos/síntesis química , Compuestos Organometálicos/química , Pseudomonas aeruginosa/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Compuestos de Terfenilo/síntesis química , Compuestos de Terfenilo/química
11.
Antimicrob Agents Chemother ; 57(9): 4229-4236, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23796930

RESUMEN

The need for daily parenteral administration is an important limitation in the clinical use of pentavalent antimonial drugs against leishmaniasis. In this study, amphiphilic antimony(V) complexes were prepared from alkylmethylglucamides (L8 and L10, with carbon chain lengths of 8 and 10, respectively), and their potential for the oral treatment of visceral leishmaniasis (VL) was evaluated. Complexes of Sb and ligand at 1:3 (SbL8 and SbL10) were obtained from the reaction of antimony(V) with L8 and L10, as evidenced by elemental and electrospray ionization-tandem mass spectrometry (ESI-MS) analyses. Fluorescence probing of hydrophobic environment and negative-staining transmission electron microscopy showed that SbL8 forms kinetically stabilized nanoassemblies in water. Pharmacokinetic studies with mice in which the compound was administered by the oral route at 200 mg of Sb/kg of body weight indicated that the SbL8 complex promoted greater and more sustained Sb levels in serum and liver than the levels obtained for the conventional antimonial drug meglumine antimoniate (Glucantime [Glu]). The efficacy of SbL8 and SbL10 administered by the oral route was evaluated in BALB/c mice infected with Leishmania infantum after a daily dose of 200 mg of Sb/kg for 20 days. Both complexes promoted significant reduction in the liver and spleen parasite burdens in relation to those in the saline-treated control group. The extent of parasite suppression (>99.96%) was similar to that achieved after Glu given intraperitoneally at 80 mg of Sb/kg/day. As expected, there was no significant reduction in the parasitic load in the group treated orally with Glu at 200 mg of Sb/(kg day). In conclusion, amphiphilic antimony(V) complexes emerge as an innovative and promising strategy for the oral treatment of VL.

12.
Biophys Rev ; 15(4): 751-765, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37681109

RESUMEN

The pentavalent meglumine antimoniate (MA) is still a first-line drug in the treatment of leishmaniasis in several countries. As an attempt to elucidate its mechanism of action and develop new antimonial drugs with improved therapeutic profile, Sb(V) complexes with different ligands, including ß-cyclodextrin (ß-CD), nucleosides and non-ionic surfactants, have been studied. Interestingly, Sb(V) oxide, MA, its complex with ß-CD, Sb(V)-guanosine complex and amphiphilic Sb(V) complexes with N-alkyl-N-methylglucamide, have shown marked tendency to self-assemble in aqueous solutions, forming nanoaggregates, hydrogel or micelle-like nanoparticles. Surprisingly, the resulting assemblies presented in most cases slow dissociation kinetics upon dilution and a strong influence of pH, which impacted on their pharmacokinetic and therapeutic properties against leishmaniasis. To explain this unique property, we raised the hypothesis that multiple pnictogen bonds could contribute to the formation of these assemblies and their kinetic of dissociation. The present article reviews our current knowledge on the structural organization and physicochemical characteristics of Sb-based supramolecular assemblies, as well as their pharmacological properties and potential for treatment of leishmaniasis. This review supports the feasibility of the rational design of new Sb(V) complexes with supramolecular assemblies for the safe and effective treatment of leishmaniasis.

13.
Antimicrob Agents Chemother ; 56(6): 2858-67, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22411610

RESUMEN

An innovative liposomal formulation of meglumine antimoniate (LMA) was recently reported to promote both long-term parasite suppression and reduction of infectivity to sand flies in dogs with visceral leishmaniasis. However, 5 months after treatment, parasites were still found in the bone marrow of all treated dogs. In order to improve treatment with LMA, the present study aimed to evaluate its efficacy in combination with allopurinol. Mongrel dogs naturally infected with Leishmania infantum were treated with six doses of LMA (6.5 mg Sb/kg of body weight/dose) given at 4-day intervals, plus allopurinol (20 mg/kg/24 h per os) for 140 days. Comparison was made with groups treated with LMA, allopurinol, empty liposomes plus allopurinol, empty liposomes, and saline. Dogs remained without treatment from day 140 to 200 after the start of treatment. The drug combination promoted both clinical improvement of dogs and significant reduction in the parasitic load in bone marrow and spleen on days 140 and 200 compared to these parameters in the pretreatment period. This is in contrast with the other protocols, which did not result in significant reduction of the bone marrow parasite load on day 200. Strikingly, the combined treatment, in contrast to the other regimens, induced negative quantitative PCR (qPCR) results in the liver of 100% of the dogs. Both xenodiagnosis and skin parasite determination by qPCR indicated that the drug combination was effective in blocking the transmission of skin parasites to sand flies. Based on all of the parasitological tests performed on day 200, 50% of the animals that received the combined treatment were considered cured.


Asunto(s)
Alopurinol/química , Alopurinol/uso terapéutico , Antiprotozoarios/uso terapéutico , Leishmaniasis Visceral/tratamiento farmacológico , Liposomas/química , Meglumina/química , Meglumina/uso terapéutico , Compuestos Organometálicos/química , Compuestos Organometálicos/uso terapéutico , Animales , Antiprotozoarios/química , Perros , Femenino , Masculino , Antimoniato de Meglumina
14.
Molecules ; 17(11): 12622-35, 2012 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-23099618

RESUMEN

Two novel trivalent antimony(III) and bismuth(III) complexes with the nitrogen-donor heterocyclic ligand dipyrido[3,2-a:2',3'-c]phenazine (dppz) were synthesized and characterized as [Sb(dppz)Cl3]∙H2O∙CH3OH and [Bi(dppz)Cl3]. The crystal structure of Sb(III) complex was determined by X-ray crystallography. These complexes were evaluated for their activity against the promastigote form of Sb(III)-sensitive and -resistant Leishmania infantum chagasi and Leishmania amazonensis strains. Both complexes were more effective than dppz alone in inhibiting the growth of Leishmania promastigotes and were at least 77 and 2,400 times more active than potassium antimonyl tartrate in Sb(III)-sensitive and -resistant Leishmania, respectively. The cytotoxicity of dppz and its complexes against mouse peritoneal macrophages occurred at dppz concentrations at least 6-fold greater than those found to be active against Leishmania promastigotes.To investigate the role of the metal in the improved antileishmanial activity of dppz, the activity of the Sb(III) complex was compared between the Sb-resistant mutants and their respective parental sensitive strains. The lack of cross-resistance to the Sb(III)-dppz complex together with the much lower activity of antimonyl tartrate, SbCl3 and BiCl3 strongly support the model that the metal is not active by itself but improves the activity of dppz through complexation.


Asunto(s)
Antimonio/química , Bismuto/química , Complejos de Coordinación/farmacología , Leishmania/efectos de los fármacos , Fenazinas/química , Tripanocidas/farmacología , Animales , Antimonio/farmacología , Bismuto/farmacología , Células Cultivadas , Complejos de Coordinación/química , Resistencia a Medicamentos , Concentración 50 Inhibidora , Macrófagos Peritoneales/efectos de los fármacos , Ratones , Estructura Molecular , Fenazinas/farmacología , Espectroscopía Infrarroja por Transformada de Fourier , Tripanocidas/química
15.
Pharmaceutics ; 14(8)2022 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-36015369

RESUMEN

This work aims to evaluate whether nanoassemblies (NanoSb) made from antimony(V) complexes with octanoyl-N-methylglucamide (SbL8) or decanoyl-N-methylglucamide (SbL10) would effectively target the infection sites in visceral and cutaneous leishmaniases (VL and CL). NanoSb were investigated regarding stability at different pHs, accumulation of Sb in the macrophage host cell and liver, and in vitro and in vivo activities in models of leishmaniasis. The kinetic stability assay showed that NanoSb are stable at neutral pH, but release incorporated lipophilic substance after conformational change in media that mimic the gastric fluid and the parasitophorous vacuole. NanoSb promoted greater accumulation of Sb in macrophages and in the liver of mice after parenteral administration, when compared to conventional antimonial Glucantime®. SbL10 was much more active than Glucantime® against intramacrophage Leishmania amastigotes and less cytotoxic than SbL8 against macrophages. The in vitro SbL10 activity was further enhanced with co-incorporated miltefosine. NanoSb showed high antileishmanial activity in the L. donovani murine VL after parenteral administration and moderate activity in the L. amazonensis murine CL after topical treatment. This study supports the ability of NanoSb to effectively deliver a combination of Sb and co-incorporated drug to host cell and infected tissues, in a better way than Glucantime® does.

16.
Molecules ; 16(12): 10314-23, 2011 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-22158684

RESUMEN

Antimony(V) and bismuth(V) complexes of lapachol have been synthesized by the reaction of Ph3SbCl2 or Ph3BiCl2 with lapachol (Lp) and characterized by several physicochemical techniques such as IR, and NMR spectroscopy and X-ray crystallography. The compounds contain six-coordinated antimony and bismuth atoms. The antimony(V) complex is a monomeric derivative, (Lp)(Ph3Sb)OH, and the bismuth(V) complex is a dinuclear compound bridged by an oxygen atom, (Lp)2(Ph3Bi)2O. Both compounds inhibited the growth of a chronic myelogenous leukemia cell line and the complex of Bi(V) was about five times more active than free lapachol. This work provides a rare example of an organo-Bi(V) complex showing significant cytotoxic activity.


Asunto(s)
Antimonio/farmacología , Bismuto/farmacología , Naftoquinonas/síntesis química , Naftoquinonas/farmacología , Antimonio/química , Bismuto/química , Muerte Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Cristalografía por Rayos X , Femenino , Humanos , Células K562 , Espectroscopía de Resonancia Magnética , Persona de Mediana Edad , Conformación Molecular , Naftoquinonas/química
17.
Biopharm Drug Dispos ; 31(2-3): 109-19, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20014042

RESUMEN

The orally active composition comprising meglumine antimoniate (MA) and beta-cyclodextrin (beta-CD) differs markedly from conventional drug-CD complexes, since it combines a water-soluble drug and a hydrophilic CD. In order to obtain insights into the mechanism(s) responsible for the improved oral delivery of the drug, physicochemical and pharmacokinetic studies were carried out. The composition investigated here was prepared at a 7:1 antimony(Sb)/beta-CD molar ratio, a condition that improves its solubility in water and allows the oral administration of a high dose of Sb in large animals. It was characterized by circular dichroism, (1)H-NMR, ESI-MS and photon correlation spectroscopy. Pharmacokinetic data were obtained in Beagle dogs after oral administration of the composition at 100 mg Sb/kg. (1)H-NMR and ESI-MS data supported the formation of non-inclusion complexes between MA and beta-CD. Sub-micron assemblies were also evidenced that slowly dissociate and presumably release the MA drug, upon reconstitution of the composition in water. Pharmacokinetic studies of MA and MA/beta-CD in dogs showed a prolongation of the serum mean residence time of Sb from 4.1 to 6.8 h, upon complexation of MA with beta-CD. Evidence was also obtained that Sb remains essentially under the form of pentavalent Sb-meglumine complex, following gastro-intestinal absorption from the MA/beta-CD composition. In conclusion, the present data support the model that the sustained drug release property of 7:1 MA/beta-CD composition resulted in the prolongation of MA absorption by the oral route and, consequently, in the increase of the drug mean residence time in serum.


Asunto(s)
Administración Oral , Antimonio/farmacocinética , Preparaciones de Acción Retardada , Meglumina/química , Compuestos Organometálicos/farmacocinética , beta-Ciclodextrinas/farmacocinética , Absorción , Animales , Dicroismo Circular , Perros , Femenino , Masculino , Meglumina/farmacocinética , Antimoniato de Meglumina , Ratones
18.
Nanomedicine (Lond) ; 15(8): 755-771, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32193975

RESUMEN

Aim: To investigate the photodynamic therapeutic potential of ferromagnetic iron oxide nanorods (FIONs), using Trigonella foenum-graecum as a reducing agent, against Leishmania tropica. Materials & methods: FIONs were characterized using ultraviolet visible spectroscopy, x-ray diffraction and scanning electron microscopy. Results: FIONs showed excellent activity against L. tropica promastigotes and amastigotes (IC50 0.036 ± 0.003 and 0.072 ± 0.001 µg/ml, respectively) upon 15 min pre-incubation light-emitting diode light (84 lm/W) exposure, resulting in reactive oxygen species generation and induction of cell death via apoptosis. FIONs were found to be highly biocompatible with human erythrocytes (LD50 779 ± 21 µg/ml) and significantly selective (selectivity index >1000) against murine peritoneal macrophages (CC50 102.7 ± 2.9 µg/ml). Conclusion: Due to their noteworthy in vitro antileishmanial properties, FIONs should be further investigated in an in vivo model of the disease.


Asunto(s)
Antiprotozoarios , Compuestos Férricos , Leishmania tropica/efectos de los fármacos , Nanotubos , Especies Reactivas de Oxígeno/metabolismo , Animales , Antiprotozoarios/farmacología , Eritrocitos , Humanos , Macrófagos , Ratones , Ratones Endogámicos BALB C
19.
Molecules ; 14(7): 2317-36, 2009 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-19633606

RESUMEN

Pentavalent antimonials, including meglumine antimoniate and sodium stibogluconate, have been used for more than half a century in the therapy of the parasitic disease leishmaniasis. Even though antimonials are still the first-line drugs, they exhibit several limitations, including severe side effects, the need for daily parenteral administration and drug resistance. The molecular structure of antimonials, their metabolism and mechanism of action are still being investigated. Some recent studies suggest that pentavalent antimony acts as a prodrug that is converted to active and more toxic trivalent antimony. Other works support the direct involvement of pentavalent antimony. Recent data suggest that the biomolecules, thiols and ribonucleosides, may mediate the actions of these drugs. This review will summarize the progress to date on the chemistry and biochemistry of pentavalent antimony. It will also present the most recent works being done to improve antimonial chemotherapy. These works include the development of simple synthetic methods for pentavalent antimonials, liposome-based formulations for targeting the Leishmania parasites responsible for visceral leishmaniasis and cyclodextrin-based formulations to promote the oral delivery of antimony.


Asunto(s)
Antimonio/química , Leishmania/efectos de los fármacos , Compuestos Organometálicos/química , Compuestos Organometálicos/farmacología , Tripanocidas/química , Tripanocidas/farmacología , Animales , Humanos , Leishmaniasis/tratamiento farmacológico , Liposomas , Compuestos Organometálicos/síntesis química , Tripanocidas/síntesis química
20.
Antimicrob Agents Chemother ; 52(7): 2564-72, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18458133

RESUMEN

The toxicity and antileishmanial effectiveness of a novel liposome formulation of meglumine antimoniate in mongrel dogs with visceral leishmaniasis (VL) obtained from a region where VL is endemic in Brazil have been investigated. Groups of 12 animals received by the intravenous route four doses (with 4-day intervals) of either liposomal meglumine antimoniate (group I [GI], 6.5 mg Sb/kg of body weight/dose), empty liposomes (GII), or isotonic saline (GIII). Evaluation of markers of hematopoietic, hepatic, and renal functions before and just after treatment showed no significant change. On the other hand, transitory adverse reactions, including prostration, defecation, tachypnea, and sialorrhea, were observed during the first 15 min after injections in GI and GII. Parasitological evaluation of sternal bone marrow 4 days after the last dose showed a significant reduction of parasite burden in GI, compared to the other groups. Immunocytochemical evaluations of the skin, bone marrow, cervical lymph nodes, livers, and spleens of dogs for parasites, 150 days after treatment, indicated significant parasite suppression (higher than 95.7%) in the lymph nodes, livers, and spleens of GI, compared to control groups. Feeding of Lutzomyia longipalpis phlebotomines on dogs from GI, 150 days after treatment, resulted in a significant reduction of sand fly infection efficiency, compared to feeding on animals from GII and GIII. This is the first report of both long-term parasite suppression and reduction of infectivity to sand flies in naturally infected dogs following treatment with a liposome-encapsulated drug. Importantly, this was achieved using a 20-fold-lower cumulative dose of Sb than is used for conventional antimonial treatment.


Asunto(s)
Antiprotozoarios/administración & dosificación , Enfermedades de los Perros/tratamiento farmacológico , Leishmania infantum , Leishmaniasis Visceral/veterinaria , Meglumina/administración & dosificación , Compuestos Organometálicos/administración & dosificación , Phlebotomus/parasitología , Animales , Antiprotozoarios/toxicidad , Enfermedades de los Perros/parasitología , Enfermedades de los Perros/transmisión , Perros , Femenino , Insectos Vectores/parasitología , Leishmania infantum/efectos de los fármacos , Leishmania infantum/aislamiento & purificación , Leishmania infantum/patogenicidad , Leishmaniasis Visceral/tratamiento farmacológico , Leishmaniasis Visceral/parasitología , Leishmaniasis Visceral/transmisión , Liposomas , Masculino , Meglumina/toxicidad , Antimoniato de Meglumina , Compuestos Organometálicos/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA