Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Phys Rev Lett ; 108(18): 185701, 2012 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-22681090

RESUMEN

The subtle interplay of randomness and quantum fluctuations at low temperatures gives rise to a plethora of unconventional phenomena in systems ranging from quantum magnets and correlated electron materials to ultracold atomic gases. Particularly strong disorder effects have been predicted to occur at zero-temperature quantum phase transitions. Here, we demonstrate that the composition-driven ferromagnetic-to-paramagnetic quantum phase transition in Sr(1-x)Ca(x)RuO3 is completely destroyed by the disorder introduced via the different ionic radii of the randomly distributed Sr and Ca ions. Using a magneto-optical technique, we map the magnetic phase diagram in the composition-temperature space. We find that the ferromagnetic phase is significantly extended by the disorder and develops a pronounced tail over a broad range of the composition x. These findings are explained by a microscopic model of smeared quantum phase transitions in itinerant magnets. Moreover, our theoretical study implies that correlated disorder is even more powerful in promoting ferromagnetism than random disorder.

2.
Phys Rev Lett ; 109(16): 167401, 2012 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-23215127

RESUMEN

We study the magneto-optical (MO) response of the polar semiconductor BiTeI with giant bulk Rashba spin splitting at various carrier densities. Despite being nonmagnetic, the material is found to yield a huge MO activity in the infrared region under moderate magnetic fields (up to 3 T). Our first-principles calculations show that the enhanced MO response of BiTeI comes mainly from the intraband transitions between the Rashba-split bulk conduction bands. These transitions connecting electronic states with opposite spin directions become active due to the presence of strong spin-orbit interaction and give rise to distinct features in the MO spectra with a systematic doping dependence. We predict an even more pronounced enhancement in the low-energy MO response and dc Hall effect near the crossing (Dirac) point of the conduction bands.

3.
Biomater Sci ; 3(4): 586-91, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26222418

RESUMEN

We report that stiffness gradients facilitate infiltration of cells through otherwise cell-impermeable hydrogel interfaces. By enabling the separation of hydrogel manufacturing and cell seeding, and by improving cell colonization of additively manufactured hydrogel elements, interfacial density gradients present a promising strategy to progress in the creation of 3D tissue models.


Asunto(s)
Materiales Biocompatibles/química , Hidrogeles/química , Adhesión Celular/efectos de los fármacos , Técnicas de Cultivo de Célula
4.
Phys Rev Lett ; 101(3): 037206, 2008 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-18764288

RESUMEN

We have studied the bandwidth-temperature-magnetic-field phase diagram of RE0.55Sr0.45MnO3 colossal magnetoresistance manganites with ferromagnetic metal (FM) ground state. The bandwidth was controlled both via chemical substitution and hydrostatic pressure with a focus on the vicinity of the critical pressure p;{*} where the character of the zero-field FM transition changes from first to second order. Below p;{*} the first-order FM transition extends up to a critical magnetic field. It approaches zero on the larger bandwidth side where the surface of the first-order FM phase boundary is terminated by a multicritical end point. The change in the character of the transition and the decrease of the colossal magnetoresistance effect is attributed to the reduced charge-order and orbital-order fluctuations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA