Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
EMBO Rep ; 19(10)2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30104204

RESUMEN

Histone acetylation influences protein interactions and chromatin accessibility and plays an important role in the regulation of transcription, replication, and DNA repair. Conversely, DNA damage affects these crucial cellular processes and induces changes in histone acetylation. However, a comprehensive overview of the effects of DNA damage on the histone acetylation landscape is currently lacking. To quantify changes in histone acetylation, we developed an unbiased quantitative mass spectrometry analysis on affinity-purified acetylated histone peptides, generated by differential parallel proteolysis. We identify a large number of histone acetylation sites and observe an overall reduction of acetylated histone residues in response to DNA damage, indicative of a histone-wide loss of acetyl modifications. This decrease is mainly caused by DNA damage-induced replication stress coupled to specific proteasome-dependent loss of acetylated histones. Strikingly, this degradation of acetylated histones is independent of ubiquitylation but requires the PA200-proteasome activator, a complex that specifically targets acetylated histones for degradation. The uncovered replication stress-induced degradation of acetylated histones represents an important chromatin-modifying response to cope with replication stress.


Asunto(s)
Cromatina/genética , Daño del ADN/genética , Proteínas Nucleares/genética , Complejo de la Endopetidasa Proteasomal/genética , Acetilación , Secuencia de Aminoácidos/genética , Reparación del ADN/genética , Replicación del ADN/genética , Histonas/genética , Humanos , Proteolisis , Ubiquitinación/genética
2.
Life Sci Alliance ; 7(3)2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38199845

RESUMEN

Protein ubiquitylation regulates key biological processes including transcription. This is exemplified by the E3 ubiquitin ligase RNF12/RLIM, which controls developmental gene expression by ubiquitylating the REX1 transcription factor and is mutated in an X-linked intellectual disability disorder. However, the precise mechanisms by which ubiquitylation drives specific transcriptional responses are not known. Here, we show that RNF12 is recruited to specific genomic locations via a consensus sequence motif, which enables co-localisation with REX1 substrate at gene promoters. Surprisingly, RNF12 chromatin recruitment is achieved via a non-catalytic basic region and comprises a previously unappreciated N-terminal autoinhibitory mechanism. Furthermore, RNF12 chromatin targeting is critical for REX1 ubiquitylation and downstream RNF12-dependent gene regulation. Our results demonstrate a key role for chromatin in regulation of the RNF12-REX1 axis and provide insight into mechanisms by which protein ubiquitylation enables programming of gene expression.


Asunto(s)
Cromatina , Discapacidad Intelectual , Humanos , Cromatina/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación , Genómica
3.
EMBO Mol Med ; 15(11): e17973, 2023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-37800682

RESUMEN

The brittle hair syndrome Trichothiodystrophy (TTD) is characterized by variable clinical features, including photosensitivity, ichthyosis, growth retardation, microcephaly, intellectual disability, hypogonadism, and anaemia. TTD-associated mutations typically cause unstable mutant proteins involved in various steps of gene expression, severely reducing steady-state mutant protein levels. However, to date, no such link to instability of gene-expression factors for TTD-associated mutations in MPLKIP/TTDN1 has been established. Here, we present seven additional TTD individuals with MPLKIP mutations from five consanguineous families, with a newly identified MPLKIP variant in one family. By mass spectrometry-based interaction proteomics, we demonstrate that MPLKIP interacts with core splicing factors and the lariat debranching protein DBR1. MPLKIP-deficient primary fibroblasts have reduced steady-state DBR1 protein levels. Using Human Skin Equivalents (HSEs), we observed impaired keratinocyte differentiation associated with compromised splicing and eventually, an imbalanced proteome affecting skin development and, interestingly, also the immune system. Our data show that MPLKIP, through its DBR1 stabilizing role, is implicated in mRNA splicing, which is of particular importance in highly differentiated tissue.


Asunto(s)
Síndromes de Tricotiodistrofia , Humanos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Consanguinidad , Mutación , Fenotipo , Empalme del ARN , Síndromes de Tricotiodistrofia/genética , Síndromes de Tricotiodistrofia/metabolismo
4.
Elife ; 102021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34313222

RESUMEN

ATP-dependent chromatin remodelers control the accessibility of genomic DNA through nucleosome mobilization. However, the dynamics of genome exploration by remodelers, and the role of ATP hydrolysis in this process remain unclear. We used live-cell imaging of Drosophila polytene nuclei to monitor Brahma (BRM) remodeler interactions with its chromosomal targets. In parallel, we measured local chromatin condensation and its effect on BRM association. Surprisingly, only a small portion of BRM is bound to chromatin at any given time. BRM binds decondensed chromatin but is excluded from condensed chromatin, limiting its genomic search space. BRM-chromatin interactions are highly dynamic, whereas histone-exchange is limited and much slower. Intriguingly, loss of ATP hydrolysis enhanced chromatin retention and clustering of BRM, which was associated with reduced histone turnover. Thus, ATP hydrolysis couples nucleosome remodeling to remodeler release, driving a continuous transient probing of the genome.


Asunto(s)
Adenosina Trifosfato/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ensamble y Desensamble de Cromatina , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Ribonucleoproteína Nuclear Pequeña U1/metabolismo , Transactivadores/metabolismo , Adenosina Trifosfatasas/metabolismo , Animales , Línea Celular , Drosophila melanogaster/genética , Histonas/metabolismo , Hidrólisis , Nucleosomas/metabolismo
5.
JBMR Plus ; 1(1): 16-26, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30283877

RESUMEN

Osteoporosis is a common skeletal disorder characterized by low bone mass leading to increased bone fragility and fracture susceptibility. The bone building cells, osteoblasts, are derived from mesenchymal stromal cells (MSCs); however, with increasing age osteogenic differentiation is diminished and more adipocytes are seen in the bone marrow, suggesting a shift in MSC lineage commitment. Identification of specific factors that stimulate osteoblast differentiation from human MSCs may deliver therapeutic targets to treat osteoporosis. The aim of this study was to identify novel genes involved in osteoblast differentiation of human bone marrow-derived MSCs (hMSCs). We identified the gene chloride intracellular channel protein 3 (CLIC3) to be strongly upregulated during MSC-derived osteoblast differentiation. Lentiviral overexpression of CLIC3 in hMSCs caused a 60% increase of matrix mineralization. Conversely, knockdown of CLIC3 in hMSCs using two short-hairpin RNAs (shRNAs) against CLIC3 resulted in a 69% to 76% reduction in CLIC3 mRNA expression, 53% to 37% less alkaline phosphatase (ALP) activity, and 78% to 88% less matrix mineralization compared to scrambled control. Next, we used an in vivo human bone formation model in which hMSCs lentivirally transduced with the CLIC3 overexpression construct were loaded onto a scaffold (hydroxyapatite-tricalcium-phosphate), implanted under the skin of NOD-SCID mice, and analyzed for bone formation 8 weeks later. CLIC3 overexpression led to a 15-fold increase in bone formation (0.33% versus 5.05% bone area relative to scaffold). Using a Clic3-His-tagged pull-down assay and liquid chromatography-mass spectrometry (LS/MS)-based proteomics analysis in lysates of osteogenically differentiated hMSCs, we showed that CLIC3 interacts with NIMA-related kinase 9 (NEK9) and phosphatidylserine synthase 1 (PTDSS1) in vitro, and this finding was supported by immunofluorescent analysis. In addition, inhibition of NEK9 or PTDSS1 gene expression by shRNAs inhibited osteoblast differentiation and mineralization. In conclusion, we successfully identified CLIC3 to be a lineage-specific gene regulating osteoblast differentiation and bone formation through its interaction with NEK9 and PTDSS1. © The Authors. JBMR Plus is published by Wiley Periodicals, Inc. on behalf of the American Society for Bone and Mineral Research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA