Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Br J Nutr ; 102(4): 506-8, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19660151

RESUMEN

Carrying a functional single nucleotide polymorphism (L503F, c. 1672 C>T) in the gene for the Na-dependent organic cation transporter (OCTN1), increases the risk of Crohn's disease (CD) in some, but not all, populations. Case-control data on New Zealand Caucasians show no differences for CD risk between individuals carrying the L503F OCTN1 C-allele when compared with those carrying the variant T-allele. However, more of the New Zealand CD cases report intolerance to maize and mushrooms than those who report beneficial effects or no differences. The OCTN1 gene encodes a transporter for ergothionine, a fungal metabolite at high levels in mushrooms but not widely common in other dietary items. An inability to tolerate mushrooms showed statistically significant associations with the variant OCTN1 genotype. That is, among those individuals reporting adverse effects from mushrooms, there was a higher frequency of the variant T-allele when compared with the general population, or with CD patients overall. We believe that this is a novel gene-diet association, suggesting that individuals carrying the OCTN1 variant single nucleotide polymorphism may have an enhanced risk of adverse symptoms associated with consuming mushrooms. Nutrigenomic approaches to dietary recommendations may be appropriate in this group.


Asunto(s)
Agaricales , Alelos , Enfermedad de Crohn/genética , Hipersensibilidad a los Alimentos/genética , Proteínas de Transporte de Catión Orgánico/genética , Estudios de Casos y Controles , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Nueva Zelanda , Análisis de Regresión , Simportadores , Población Blanca/genética , Zea mays
2.
BMC Res Notes ; 2: 52, 2009 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-19327158

RESUMEN

BACKGROUND: The nucleotide-binding oligomerization domain containing 1 (NOD1) gene encodes a pattern recognition receptor that senses pathogens, leading to downstream responses characteristic of innate immunity. We investigated the role of NOD1 single nucleotide polymorphisms (SNPs) on IBD risk in a New Zealand Caucasian population, and studied Nod1 expression in response to bacterial invasion in the Caco2 cell line. FINDINGS: DNA samples from 388 Crohn's disease (CD), 405 ulcerative colitis (UC), 27 indeterminate colitis patients and 201 randomly selected controls, from Canterbury, New Zealand were screened for 3 common SNPs in NOD1, using the MassARRAY iPLEX Gold assay. Transcriptional activation of the protein produced by NOD1 (Nod1) was studied after infection of Caco2 cells with Escherichia coli LF82. Carrying the rs2075818 G allele decreased the risk of CD (OR = 0.66, 95% CI = 0.50-0.88, p < 0.002) but not UC. There was an increased frequency of the three SNP (rs2075818, rs2075822, rs2907748) haplotype, CTG (p = 0.004) and a decreased frequency of the GTG haplotype (p = 0.02).in CD. The rs2075822 CT or TT genotypes were at an increased frequency (genotype p value = 0.02), while the rs2907748 AA or AG genotypes showed decreased frequencies in UC (p = 0.04), but not in CD. Functional assays showed that Nod1 is produced 6 hours after bacterial invasion of the Caco2 cell line. CONCLUSION: The NOD1 gene is important in signalling invasion of colonic cells by pathogenic bacteria, indicative of its' key role in innate immunity. Carrying specific SNPs in this gene significantly modifies the risk of CD and/or UC in a New Zealand Caucasian population.

3.
Gastroenterol Res Pract ; 2009: 591704, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19421420

RESUMEN

Inflammatory bowel diseases (IBDs) comprising Crohn disease (CD) and ulcerative colitis (UC) are chronic inflammatory conditions with polygenic susceptibility. Interactions between TNF-alpha and TNF-alpha receptor play a fundamental role in inflammatory response. This study investigates the role that selected single nucleotide polymorphisms (SNPs) and haplotypes in the TNF-alpha receptor (TNSFRSF1B) gene play in the risk of IBD in a New Zealand Caucasian population. DNA samples from 388 CD, 405 UC, 27 indeterminate colitis patients, and 293 randomly selected controls, from Canterbury, New Zealand were screened for 3 common SNPs in TNSFRSF1B: rs1061622 (c.676T > C), rs1061624 (c.*1663A > G), and rs3397 (c.*1690T > C), using TaqMan technologies. Carrying the rs1061624 variant decreased the risk of UC in the left colon (OR 0.73, 95% CI = 0.54-1.00) and of being a smoker at diagnosis (OR 0.62; 95% CI = 0.40-0.96). Carrying the rs3397 variant decreased the risk of penetrating CD (OR 0.62, 95% CI = 0.40-0.95). Three marker haplotype analyses revealed highly significant differences between CD patients and control subjects (chi(2) = 29.9, df = 7, P = .0001) and UC cases and controls (chi(2) = 46.3, df = 7, P < .0001). We conclude that carrying a 3-marker haplotype in the TNSFRSF1B gene may increase (e.g., haplotype of GGC was 2.9-fold more in the CD or UCpatients) or decrease (e.g., TGT was 0.47-fold less in UC patients) the risk of IBD in a New Zealand Caucasian population.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA