Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Am J Physiol Cell Physiol ; 325(5): C1244-C1251, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37746696

RESUMEN

Myopathic processes affect skeletal muscle and heart. In the muscular dystrophies, which are a subset of myopathies, muscle cells are gradually replaced by fibrosis and fat, impairing muscle function as well as regeneration and repair. In addition to skeletal muscle, these genetic disorders often also affect the heart, where fibrofatty infiltration progressively accumulates in the myocardium, impairing heart function. Although considerable effort has focused on gene-corrective and gene-replacement approaches to stabilize myofibers and cardiomyocytes, the continual and ongoing deposition of extracellular matrix itself contributes to tissue and organ dysfunction. Transcriptomic and proteomic profiling, along with high-resolution imaging and biophysical measurements, have been applied to define extracellular matrix components and their role in contributing to cardiac and skeletal muscle weakness. More recently, decellularization methods have been adapted to an on-slide format to preserve the spatial geography of the extracellular matrix, allowing new insight into matrix remodeling and its direct role in suppressing regeneration in muscle. This review highlights recent literature with focus on the extracellular matrix and molecular mechanisms that contribute to muscle and heart fibrotic disorders. We will also compare how the myopathic matrix differs from healthy matrix, emphasizing how the pathological matrix contributes to disease.


Asunto(s)
Cardiopatías , Enfermedades Musculares , Humanos , Proteómica , Matriz Extracelular/patología , Enfermedades Musculares/genética , Enfermedades Musculares/patología , Músculo Esquelético/patología , Miocitos Cardíacos/patología , Cardiopatías/patología , Progresión de la Enfermedad , Fibrosis
2.
Clin Immunol ; 252: 109634, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37150240

RESUMEN

Over two years into the COVID-19 pandemic, the human immune response to SARS-CoV-2 during the active disease phase has been extensively studied. However, the long-term impact after recovery, which is critical to advance our understanding SARS-CoV-2 and COVID-19-associated long-term complications, remains largely unknown. Herein, we characterized single-cell profiles of circulating immune cells in the peripheral blood of 100 patients, including convalescent COVID-19 and sero-negative controls. Flow cytometry analyses revealed reduced frequencies of both short-lived monocytes and long-lived regulatory T (Treg) cells within the patients who have recovered from severe COVID-19. sc-RNA seq analysis identifies seven heterogeneous clusters of monocytes and nine Treg clusters featuring distinct molecular signatures in association with COVID-19 severity. Asymptomatic patients contain the most abundant clusters of monocytes and Tregs expressing high CD74 or IFN-responsive genes. In contrast, the patients recovered from a severe disease have shown two dominant inflammatory monocyte clusters featuring S100 family genes: one monocyte cluster of S100A8 & A9 coupled with high HLA-I and another cluster of S100A4 & A6 with high HLA-II genes, a specific non-classical monocyte cluster with distinct IFITM family genes, as well as a unique TGF-ß high Treg Cluster. The outpatients and seronegative controls share most of the monocyte and Treg clusters patterns with high expression of HLA genes. Surprisingly, while presumably short-lived monocytes appear to have sustained alterations over 4 months, the decreased frequencies of long-lived Tregs (high HLA-DRA and S100A6) in the outpatients restore over the tested convalescent time (≥ 4 months). Collectively, our study identifies sustained and dynamically altered monocytes and Treg clusters with distinct molecular signatures after recovery, associated with COVID-19 severity.


Asunto(s)
COVID-19 , Monocitos , Humanos , COVID-19/metabolismo , Linfocitos T Reguladores , Pandemias , SARS-CoV-2
3.
J Infect Dis ; 224(5): 793-797, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34117873

RESUMEN

We investigated whether the antibody response to coronavirus disease 2019 (COVID-19) mRNA vaccination is similar in women and men. In a community cohort without prior COVID-19, first vaccine dose produced higher immunoglobulin G (IgG) levels and percent inhibition of spike-ACE2 receptor binding, a surrogate measure of virus neutralization, in women compared to men (7.0 µg/mL, 51.6% vs 3.3 µg/mL, 36.4%). After 2 doses, IgG levels remained significantly higher for women (30.4 µg/mL) compared to men (20.6 µg/mL), while percent inhibition was similar (98.4% vs 97.7%). Sex-specific antibody response to mRNA vaccination informs future efforts to understand vaccine protection and side effects.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , Inmunoglobulina G/inmunología , Vacunas Sintéticas/inmunología , Adulto , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Formación de Anticuerpos/inmunología , Femenino , Humanos , Pruebas Inmunológicas/métodos , Masculino , Persona de Mediana Edad , Pruebas de Neutralización/métodos , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunación/métodos , Vacunas de ARNm
4.
Hum Mol Genet ; 28(2): 279-289, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30289454

RESUMEN

Like other single-gene disorders, muscular dystrophy displays a range of phenotypic heterogeneity even with the same primary mutation. Identifying genetic modifiers capable of altering the course of muscular dystrophy is one approach to deciphering gene-gene interactions that can be exploited for therapy development. To this end, we used an intercross strategy in mice to map modifiers of muscular dystrophy. We interrogated genes of interest in an interval on mouse chromosome 10 associated with body mass in muscular dystrophy as skeletal muscle contributes significantly to total body mass. Using whole-genome sequencing of the two parental mouse strains combined with deep RNA sequencing, we identified the Met62Ile substitution in the dual-specificity phosphatase 6 (Dusp6) gene from the DBA/2 J (D2) mouse strain. DUSP6 is a broadly expressed dual-specificity phosphatase protein, which binds and dephosphorylates extracellular-signal-regulated kinase (ERK), leading to decreased ERK activity. We found that the Met62Ile substitution reduced the interaction between DUSP6 and ERK resulting in increased ERK phosphorylation and ERK activity. In dystrophic muscle, DUSP6 Met62Ile is strongly upregulated to counteract its reduced activity. We found that myoblasts from the D2 background were insensitive to a specific small molecule inhibitor of DUSP6, while myoblasts expressing the canonical DUSP6 displayed enhanced proliferation after exposure to DUSP6 inhibition. These data identify DUSP6 as an important regulator of ERK activity in the setting of muscle growth and muscular dystrophy.


Asunto(s)
Fosfatasa 6 de Especificidad Dual/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Desarrollo de Músculos/genética , Distrofia Muscular Animal/genética , Animales , Línea Celular , Mapeo Cromosómico , Fosfatasa 6 de Especificidad Dual/antagonistas & inhibidores , Femenino , Masculino , Ratones Endogámicos DBA , Distrofia Muscular Animal/enzimología , Mutación Missense , Sitios de Carácter Cuantitativo
5.
PLoS Genet ; 13(10): e1007070, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29065150

RESUMEN

Genetic disruption of the dystrophin complex produces muscular dystrophy characterized by a fragile muscle plasma membrane leading to excessive muscle degeneration. Two genetic modifiers of Duchenne Muscular Dystrophy implicate the transforming growth factor ß (TGFß) pathway, osteopontin encoded by the SPP1 gene and latent TGFß binding protein 4 (LTBP4). We now evaluated the functional effect of these modifiers in the context of muscle injury and repair to elucidate their mechanisms of action. We found that excess osteopontin exacerbated sarcolemmal injury, and correspondingly, that loss of osteopontin reduced injury extent both in isolated myofibers and in muscle in vivo. We found that ablation of osteopontin was associated with reduced expression of TGFß and TGFß-associated pathways. We identified that increased TGFß resulted in reduced expression of Anxa1 and Anxa6, genes encoding key components of the muscle sarcolemma resealing process. Genetic manipulation of Ltbp4 in dystrophic muscle also directly modulated sarcolemmal resealing, and Ltbp4 alleles acted in concert with Anxa6, a distinct modifier of muscular dystrophy. These data provide a model in which a feed forward loop of TGFß and osteopontin directly impacts the capacity of muscle to recover from injury, and identifies an intersection of genetic modifiers on muscular dystrophy.


Asunto(s)
Genes Modificadores , Proteínas de Unión a TGF-beta Latente/fisiología , Músculo Esquelético/fisiología , Distrofia Muscular Animal/genética , Osteopontina/metabolismo , Animales , Anexina A1/genética , Anexina A1/metabolismo , Anexina A6/genética , Anexina A6/metabolismo , Femenino , Regulación de la Expresión Génica , Masculino , Ratones , Ratones Endogámicos DBA , Ratones Noqueados , Músculo Esquelético/lesiones , Distrofia Muscular Animal/metabolismo , Distrofia Muscular Animal/patología , Osteopontina/genética , Receptores de Factores de Crecimiento Transformadores beta/genética , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Recuperación de la Función , Sarcolema/fisiología
6.
Am J Pathol ; 187(11): 2520-2535, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28823869

RESUMEN

The muscular dystrophies are genetically diverse. Shared pathological features among muscular dystrophies include breakdown, or loss of muscle, and accompanying fibrotic replacement. Novel strategies are needed to enhance muscle repair and function and to slow this pathological remodeling. Glucocorticoid steroids, like prednisone, are known to delay loss of ambulation in patients with Duchenne muscular dystrophy but are accompanied by prominent adverse effects. However, less is known about the effects of steroid administration in other types of muscular dystrophies, including limb-girdle muscular dystrophies (LGMDs). LGMD 2B is caused by loss of dysferlin, a membrane repair protein, and LGMD 2C is caused by loss of the dystrophin-associated protein, γ-sarcoglycan. Herein, we assessed the efficacy of steroid dosing on sarcolemmal repair, muscle function, histopathology, and the regenerative capacity of primary muscle cells. We found that in murine models of LGMD 2B and 2C, daily prednisone dosing reduced muscle damage and fibroinflammatory infiltration. However, daily prednisone dosing also correlated with increased muscle adipogenesis and atrophic remodeling. Conversely, intermittent dosing of prednisone, provided once weekly, enhanced muscle repair and did not induce atrophy or adipogenesis, and was associated with improved muscle function. These data indicate that dosing frequency of glucocorticoid steroids affects muscle remodeling in non-Duchenne muscular dystrophies, suggesting a positive outcome associated with intermittent steroid dosing in LGMD 2B and 2C muscle.


Asunto(s)
Glucocorticoides/farmacología , Músculo Esquelético/efectos de los fármacos , Distrofia Muscular de Cinturas/tratamiento farmacológico , Animales , Distrofina/efectos de los fármacos , Distrofina/metabolismo , Glucocorticoides/administración & dosificación , Proteínas de la Membrana/metabolismo , Ratones , Músculo Esquelético/patología , Distrofia Muscular de Cinturas/patología , Distrofia Muscular de Duchenne/tratamiento farmacológico , Distrofia Muscular de Duchenne/metabolismo , Prednisona/administración & dosificación , Prednisona/farmacología , Sarcoglicanos/efectos de los fármacos , Sarcoglicanos/metabolismo
7.
Semin Cell Dev Biol ; 45: 48-56, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26537430

RESUMEN

Mature skeletal muscle forms from the fusion of skeletal muscle precursor cells, myoblasts. Myoblasts fuse to other myoblasts to generate multinucleate myotubes during myogenesis, and myoblasts also fuse to other myotubes during muscle growth and repair. Proteins within myoblasts and myotubes regulate complex processes such as elongation, migration, cell adherence, cytoskeletal reorganization, membrane coalescence, and ultimately fusion. Recent studies have identified cell surface proteins, intracellular proteins, and extracellular signaling molecules required for the proper fusion of muscle. Many proteins that actively participate in myoblast fusion also coordinate membrane repair. Here we will review mammalian membrane fusion with specific attention to proteins that mediate myoblast fusion and muscle repair.


Asunto(s)
Fusión de Membrana , Músculo Esquelético/fisiología , Animales , Adhesión Celular , Membrana Celular/fisiología , Humanos , Péptidos y Proteínas de Señalización Intracelular/fisiología , Desarrollo de Músculos , Mioblastos/fisiología , Cicatrización de Heridas
8.
Am J Pathol ; 186(6): 1610-22, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27070822

RESUMEN

Dysferlin is a membrane-associated protein implicated in membrane resealing; loss of dysferlin leads to muscular dystrophy. We examined the same loss-of-function Dysf mutation in two different mouse strains, 129T2/SvEmsJ (Dysf(129)) and C57BL/6J (Dysf(B6)). Although there are many genetic differences between these two strains, we focused on polymorphisms in Anxa6 because these variants were previously associated with modifying a pathologically distinct form of muscular dystrophy and increased the production of a truncated annexin A6 protein. Dysferlin deficiency in the C57BL/6J background was associated with increased Evan's Blue dye uptake into muscle and increased serum creatine kinase compared to the 129T2/SvEmsJ background. In the C57BL/6J background, dysferlin loss was associated with enhanced pathologic severity, characterized by decreased mean fiber cross-sectional area, increased internalized nuclei, and increased fibrosis, compared to that in Dysf(129) mice. Macrophage infiltrate was also increased in Dysf(B6) muscle. High-resolution imaging of live myofibers demonstrated that fibers from Dysf(B6) mice displayed reduced translocation of full-length annexin A6 to the site of laser-induced sarcolemmal disruption compared to Dysf(129) myofibers, and impaired translocation of annexin A6 associated with impaired resealing of the sarcolemma. These results provide one mechanism by which the C57BL/6J background intensifies dysferlinopathy, giving rise to a more severe form of muscular dystrophy in the Dysf(B6) mouse model through increased membrane leak and inflammation.


Asunto(s)
Anexina A6/metabolismo , Proteínas de la Membrana/deficiencia , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/patología , Animales , Anexina A6/genética , Disferlina , Immunoblotting , Proteínas de la Membrana/genética , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Mutantes , Distrofia Muscular Animal/metabolismo , Reacción en Cadena de la Polimerasa , Polimorfismo de Nucleótido Simple , Transporte de Proteínas , Sarcolema/metabolismo
9.
Proc Natl Acad Sci U S A ; 111(16): 6004-9, 2014 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-24717843

RESUMEN

Many monogenic disorders, including the muscular dystrophies, display phenotypic variability despite the same disease-causing mutation. To identify genetic modifiers of muscular dystrophy and its associated cardiomyopathy, we used quantitative trait locus mapping and whole genome sequencing in a mouse model. This approach uncovered a modifier locus on chromosome 11 associated with sarcolemmal membrane damage and heart mass. Whole genome and RNA sequencing identified Anxa6, encoding annexin A6, as a modifier gene. A synonymous variant in exon 11 creates a cryptic splice donor, resulting in a truncated annexin A6 protein called ANXA6N32. Live cell imaging showed that annexin A6 orchestrates a repair zone and cap at the site of membrane disruption. In contrast, ANXA6N32 dramatically disrupted the annexin A6-rich cap and the associated repair zone, permitting membrane leak. Anxa6 is a modifier of muscular dystrophy and membrane repair after injury.


Asunto(s)
Anexina A6/metabolismo , Distrofia Muscular Animal/patología , Sarcolema/metabolismo , Sarcolema/patología , Cicatrización de Heridas , Músculos Abdominales/patología , Empalme Alternativo/genética , Animales , Anexina A6/genética , Cromosomas de los Mamíferos/genética , Susceptibilidad a Enfermedades , Genes Modificadores , Variación Genética , Ventrículos Cardíacos/patología , Espacio Intracelular/metabolismo , Membranas/patología , Ratones , Ratones Endogámicos C57BL , Distrofia Muscular Animal/genética , Tamaño de los Órganos , Transporte de Proteínas , Sitios de Carácter Cuantitativo/genética , Cicatrización de Heridas/genética
10.
Curr Top Membr ; 77: 67-96, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26781830

RESUMEN

Since an intact membrane is required for normal cellular homeostasis, membrane repair is essential for cell survival. Human genetic studies, combined with the development of novel animal models and refinement of techniques to study cellular injury, have now uncovered series of repair proteins highly relevant for human health. Many of the deficient repair pathways manifest in skeletal muscle, where defective repair processes result in myopathies or other forms of muscle disease. Dysferlin is a membrane-associated protein implicated in sarcolemmal repair and also linked to other membrane functions including the maintenance of transverse tubules in muscle. MG53, annexins, and Eps15 homology domain-containing proteins interact with dysferlin to form a membrane repair complex and similarly have roles in membrane trafficking in muscle. These molecular features of membrane repair are not unique to skeletal muscle, but rather skeletal muscle, due to its high demands, is more dependent on an efficient repair process. Phosphatidylserine and phosphatidylinositol 4,5-bisphosphate, as well as Ca(2+), are central regulators of membrane organization during repair. Given the importance of muscle health in disease and in aging, these pathways are targets to enhance muscle function and recovery from injury.


Asunto(s)
Membrana Celular/metabolismo , Enfermedad , Salud , Animales , Supervivencia Celular , Humanos , Modelos Biológicos , Enfermedades Musculares/patología
11.
Dev Biol ; 387(2): 179-90, 2014 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-24440153

RESUMEN

EHD proteins have been implicated in intracellular trafficking, especially endocytic recycling, where they mediate receptor and lipid recycling back to the plasma membrane. Additionally, EHDs help regulate cytoskeletal reorganization and induce tubule formation. It was previously shown that EHD proteins bind directly to the C2 domains in myoferlin, a protein that regulates myoblast fusion. Loss of myoferlin impairs normal myoblast fusion leading to smaller muscles in vivo but the intracellular pathways perturbed by loss of myoferlin function are not well known. We now characterized muscle development in EHD1-null mice. EHD1-null myoblasts display defective receptor recycling and mislocalization of key muscle proteins, including caveolin-3 and Fer1L5, a related ferlin protein homologous to myoferlin. Additionally, EHD1-null myoblast fusion is reduced. We found that loss of EHD1 leads to smaller muscles and myofibers in vivo. In wildtype skeletal muscle EHD1 localizes to the transverse tubule (T-tubule), and loss of EHD1 results in overgrowth of T-tubules with excess vesicle accumulation in skeletal muscle. We provide evidence that tubule formation in myoblasts relies on a functional EHD1 ATPase domain. Moreover, we extended our studies to show EHD1 regulates BIN1 induced tubule formation. These data, taken together and with the known interaction between EHD and ferlin proteins, suggests that the EHD proteins coordinate growth and development likely through mediating vesicle recycling and the ability to reorganize the cytoskeleton.


Asunto(s)
Desarrollo de Músculos/genética , Músculo Cuádriceps/embriología , Músculo Cuádriceps/crecimiento & desarrollo , Proteínas de Transporte Vesicular/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Caveolina 3/metabolismo , Citoesqueleto/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Proteínas Musculares/metabolismo , Mioblastos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Transporte de Proteínas/fisiología , Músculo Cuádriceps/metabolismo , Sarcolema/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas de Transporte Vesicular/genética
12.
Am J Pathol ; 184(1): 248-59, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24177035

RESUMEN

Dysferlin is a membrane-associated protein implicated in muscular dystrophy and vesicle movement and function in muscles. The precise role of dysferlin has been debated, partly because of the mild phenotype in dysferlin-null mice (Dysf). We bred Dysf mice to mice lacking myoferlin (MKO) to generate mice lacking both myoferlin and dysferlin (FER). FER animals displayed progressive muscle damage with myofiber necrosis, internalized nuclei, and, at older ages, chronic remodeling and increasing creatine kinase levels. These changes were most prominent in proximal limb and trunk muscles and were more severe than in Dysf mice. Consistently, FER animals had reduced ad libitum activity. Ultrastructural studies uncovered progressive dilation of the sarcoplasmic reticulum and ectopic and misaligned transverse tubules in FER skeletal muscle. FER muscle, and Dysf- and MKO-null muscle, exuded lipid, and serum glycerol levels were elevated in FER and Dysf mice. Glycerol injection into muscle is known to induce myopathy, and glycerol exposure promotes detachment of transverse tubules from the sarcoplasmic reticulum. Dysf, MKO, and FER muscles were highly susceptible to glycerol exposure in vitro, demonstrating a dysfunctional sarcotubule system, and in vivo glycerol exposure induced severe muscular dystrophy, especially in FER muscle. Together, these findings demonstrate the importance of dysferlin and myoferlin for transverse tubule function and in the genesis of muscular dystrophy.


Asunto(s)
Glicerol/metabolismo , Proteínas de la Membrana/genética , Proteínas Musculares/genética , Músculo Esquelético/patología , Distrofias Musculares/patología , Animales , Modelos Animales de Enfermedad , Disferlina , Femenino , Glicerol/toxicidad , Immunoblotting , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Distrofias Musculares/genética , Distrofias Musculares/metabolismo
13.
PLoS One ; 19(9): e0310551, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39298449

RESUMEN

BACKGROUND: The pathology in Duchenne muscular dystrophy (DMD) is characterized by degenerating muscle fibers, inflammation, fibro-fatty infiltrate, and edema, and these pathological processes replace normal healthy muscle tissue. The mdx mouse model is one of the most commonly used preclinical models to study DMD. Mounting evidence has emerged illustrating that muscle disease progression varies considerably in mdx mice, with inter-animal differences as well as intra-muscular differences in pathology in individual mdx mice. This variation is important to consider when conducting assessments of drug efficacy and in longitudinal studies. We developed a magnetic resonance imaging (MRI) segmentation and analysis pipeline to rapidly and non-invasively measure the severity of muscle disease in mdx mice. METHODS: Wildtype and mdx mice were imaged with MRI and T2 maps were obtained axially across the hindlimbs. A neural network was trained to rapidly and semi-automatically segment the muscle tissue, and the distribution of resulting T2 values was analyzed. Interdecile range and Pearson Skew were identified as biomarkers to quickly and accurately estimate muscle disease severity in mice. RESULTS: The semiautomated segmentation tool reduced image processing time approximately tenfold. Measures of Pearson skew and interdecile range based on that segmentation were repeatable and reflected muscle disease severity in healthy wildtype and diseased mdx mice based on both qualitative observation of images and correlation with Evans blue dye uptake. CONCLUSION: Use of this rapid, non-invasive, semi-automated MR image segmentation and analysis pipeline has the potential to transform preclinical studies, allowing for pre-screening of dystrophic mice prior to study enrollment to ensure more uniform muscle disease pathology across treatment groups, improving study outcomes.


Asunto(s)
Biomarcadores , Modelos Animales de Enfermedad , Imagen por Resonancia Magnética , Ratones Endogámicos mdx , Músculo Esquelético , Distrofia Muscular de Duchenne , Animales , Imagen por Resonancia Magnética/métodos , Ratones , Distrofia Muscular de Duchenne/diagnóstico por imagen , Distrofia Muscular de Duchenne/patología , Distrofia Muscular de Duchenne/metabolismo , Biomarcadores/metabolismo , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Fenotipo , Índice de Severidad de la Enfermedad , Masculino , Ratones Endogámicos C57BL , Procesamiento de Imagen Asistido por Computador
14.
medRxiv ; 2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38947030

RESUMEN

Background: Weekly Steroids in Muscular Dystrophy (WSiMD) was a pilot study to evaluate once weekly prednisone in patients with Limb Girdle and Becker muscular dystrophy (LGMD and BMD, respectively). At study endpoint, there were trends towards increased lean mass, reduced fat mass, reduced creatine kinase and improved motor function. The investigation was motivated by studies in mouse muscular dystrophy models in which once weekly glucocorticoid exposure enhanced muscle strength and reduced fibrosis. Methods: WSiMD participants provided blood samples for aptamer serum profiling at baseline and after 6 months of weekly steroids. A subset completed magnetic resonance (MR) evaluation of muscle at study onset and endpoint. Results/Conclusions: At baseline compared to age and sex-matched healthy controls, the aggregate serum protein profile in the WSiMD cohort was dominated by muscle proteins, reflecting leak of muscle proteins into serum. Disease status produced more proteins differentially present in serum compared to steroid-treatment effect. Nonetheless, a response to prednisone was discernable in the WSiMD cohort, even at this low dose. Glucocorticoids downregulated muscle proteins and upregulated certain immune process- and matrix-associated proteins. Muscle MR fat fraction showed trends with functional status. The prednisone-responsive markers could be used in larger trial of prednisone efficacy.

15.
Dis Model Mech ; 17(6)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38050701

RESUMEN

Heart failure contributes to Duchenne muscular dystrophy (DMD), which arises from mutations that ablate dystrophin, rendering the plasma membrane prone to disruption. Cardiomyocyte membrane breakdown in patients with DMD yields a serum injury profile similar to other types of myocardial injury with the release of creatine kinase and troponin isoforms. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are highly useful but can be improved. We generated hiPSC-CMs from a patient with DMD and subjected these cells to equibiaxial mechanical strain to mimic in vivo stress. Compared to healthy cells, DMD hiPSC-CMs demonstrated greater susceptibility to equibiaxial strain after 2 h at 10% strain. We generated an aptamer-based profile of proteins released from hiPSC-CMs both at rest and subjected to strain and identified a strong correlation in the mechanical stress-induced proteome from hiPSC-CMs and serum from patients with DMD. We exposed hiPSC-CMs to recombinant annexin A6, a protein resealing agent, and found reduced biomarker release in DMD and control hiPSC-CMs subjected to strain. Thus, the application of mechanical strain to hiPSC-CMs produces a model that reflects an in vivo injury profile, providing a platform to assess pharmacologic intervention.


Asunto(s)
Cardiomiopatías , Células Madre Pluripotentes Inducidas , Distrofia Muscular de Duchenne , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Distrofia Muscular de Duchenne/genética , Miocitos Cardíacos/metabolismo , Estrés Fisiológico , Diferenciación Celular
16.
JCI Insight ; 9(3)2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38175727

RESUMEN

The Murphy Roths Large (MRL) mouse strain has "super-healing" properties that enhance recovery from injury. In mice, the DBA/2J strain intensifies many aspects of muscular dystrophy, so we evaluated the ability of the MRL strain to suppress muscular dystrophy in the Sgcg-null mouse model of limb girdle muscular dystrophy. A comparative analysis of Sgcg-null mice in the DBA/2J versus MRL strains showed greater myofiber regeneration, with reduced structural degradation of muscle in the MRL strain. Transcriptomic profiling of dystrophic muscle indicated strain-dependent expression of extracellular matrix (ECM) and TGF-ß signaling genes. To investigate the MRL ECM, cellular components were removed from dystrophic muscle sections to generate decellularized myoscaffolds. Decellularized myoscaffolds from dystrophic mice in the protective MRL strain had significantly less deposition of collagen and matrix-bound TGF-ß1 and TGF-ß3 throughout the matrix. Dystrophic myoscaffolds from the MRL background, but not the DBA/2J background, were enriched in myokines like IGF-1 and IL-6. C2C12 myoblasts seeded onto decellularized matrices from Sgcg-/- MRL and Sgcg-/- DBA/2J muscles showed the MRL background induced greater myoblast differentiation compared with dystrophic DBA/2J myoscaffolds. Thus, the MRL background imparts its effect through a highly regenerative ECM, which is active even in muscular dystrophy.


Asunto(s)
Distrofia Muscular de Cinturas , Distrofias Musculares , Ratones , Animales , Ratones Endogámicos DBA , Distrofias Musculares/genética , Músculos , Matriz Extracelular , Ratones Noqueados
17.
Matrix Biol ; 129: 44-58, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38582404

RESUMEN

Extracellular matrix (ECM) pathologic remodeling underlies many disorders, including muscular dystrophy. Tissue decellularization removes cellular components while leaving behind ECM components. We generated "on-slide" decellularized tissue slices from genetically distinct dystrophic mouse models. The ECM of dystrophin- and sarcoglycan-deficient muscles had marked thrombospondin 4 deposition, while dysferlin-deficient muscle had excess decorin. Annexins A2 and A6 were present on all dystrophic decellularized ECMs, but annexin matrix deposition was excessive in dysferlin-deficient muscular dystrophy. Muscle-directed viral expression of annexin A6 resulted in annexin A6 in the ECM. C2C12 myoblasts seeded onto decellularized matrices displayed differential myoblast mobility and fusion. Dystrophin-deficient decellularized matrices inhibited myoblast mobility, while dysferlin-deficient decellularized matrices enhanced myoblast movement and differentiation. Myoblasts treated with recombinant annexin A6 increased mobility and fusion like that seen on dysferlin-deficient decellularized matrix and demonstrated upregulation of ECM and muscle cell differentiation genes. These findings demonstrate specific fibrotic signatures elicit effects on myoblast activity.


Asunto(s)
Diferenciación Celular , Movimiento Celular , Disferlina , Matriz Extracelular , Mioblastos , Sarcoglicanos , Animales , Mioblastos/metabolismo , Mioblastos/citología , Matriz Extracelular/metabolismo , Ratones , Sarcoglicanos/genética , Sarcoglicanos/metabolismo , Disferlina/genética , Disferlina/metabolismo , Distrofias Musculares/genética , Distrofias Musculares/metabolismo , Distrofias Musculares/patología , Distrofina/genética , Distrofina/metabolismo , Anexina A2/genética , Anexina A2/metabolismo , Decorina/genética , Decorina/metabolismo , Línea Celular , Modelos Animales de Enfermedad , Músculo Esquelético/metabolismo
18.
Sci Adv ; 10(37): eado7089, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39259797

RESUMEN

Engineered heart tissues (EHTs) generated from human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) represent powerful platforms for human cardiac research, especially in drug testing and disease modeling. Here, we report a flexible, three-dimensional electronic framework that enables real-time, spatiotemporal analysis of electrophysiologic and mechanical signals in EHTs under physiological loading conditions for dynamic, noninvasive, longer-term assessments. These electromechanically monitored EHTs support multisite measurements throughout the tissue under baseline conditions and in response to stimuli. Demonstrations include uses in tracking physiological responses to pharmacologically active agents and in capturing electrophysiological characteristics of reentrant arrhythmias. This platform facilitates precise analysis of signal location and conduction velocity in human cardiomyocyte tissues, as the basis for a broad range of advanced cardiovascular studies.


Asunto(s)
Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Ingeniería de Tejidos , Humanos , Ingeniería de Tejidos/métodos , Miocitos Cardíacos/fisiología , Miocitos Cardíacos/metabolismo , Células Madre Pluripotentes Inducidas/citología , Corazón/fisiología , Fenómenos Electrofisiológicos
19.
J Am Heart Assoc ; 13(10): e030467, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38761081

RESUMEN

BACKGROUND: Many cardiomyopathy-associated FLNC pathogenic variants are heterozygous truncations, and FLNC pathogenic variants are associated with arrhythmias. Arrhythmia triggers in filaminopathy are incompletely understood. METHODS AND RESULTS: We describe an individual with biallelic FLNC pathogenic variants, p.Arg650X and c.970-4A>G, with peripartum cardiomyopathy and ventricular arrhythmias. We also describe clinical findings in probands with FLNC variants including Val2715fs87X, Glu2458Serfs71X, Phe106Leu, and c.970-4A>G with hypertrophic and dilated cardiomyopathy, atrial fibrillation, and ventricular tachycardia. Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) were generated. The FLNC truncation, Arg650X/c.970-4A>G, showed a marked reduction in filamin C protein consistent with biallelic loss of function mutations. To assess loss of filamin C, gene editing of a healthy control iPSC line was used to generate a homozygous FLNC disruption in the actin binding domain. Because filamin C has been linked to protein quality control, we assessed the necessity of filamin C in iPSC-CMs for response to the proteasome inhibitor bortezomib. After exposure to low-dose bortezomib, FLNC-null iPSC-CMs showed an increase in the chaperone proteins BAG3, HSP70 (heat shock protein 70), and HSPB8 (small heat shock protein B8) and in the autophagy marker LC3I/II. FLNC null iPSC-CMs had prolonged electric field potential, which was further prolonged in the presence of low-dose bortezomib. FLNC null engineered heart tissues had impaired function after low-dose bortezomib. CONCLUSIONS: FLNC pathogenic variants associate with a predisposition to arrhythmias, which can be modeled in iPSC-CMs. Reduction of filamin C prolonged field potential, a surrogate for action potential, and with bortezomib-induced proteasome inhibition, reduced filamin C led to greater arrhythmia potential and impaired function.


Asunto(s)
Filaminas , Proteostasis , Filaminas/genética , Filaminas/metabolismo , Humanos , Femenino , Células Madre Pluripotentes Inducidas/metabolismo , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatología , Arritmias Cardíacas/etiología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Cardiomiopatías/fisiopatología , Masculino , Adulto , Mutación , Bortezomib/farmacología
20.
Nat Metab ; 6(2): 304-322, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38337096

RESUMEN

Skeletal muscle is dynamically controlled by the balance of protein synthesis and degradation. Here we discover an unexpected function for the transcriptional repressor B cell lymphoma 6 (BCL6) in muscle proteostasis and strength in mice. Skeletal muscle-specific Bcl6 ablation in utero or in adult mice results in over 30% decreased muscle mass and force production due to reduced protein synthesis and increased autophagy, while it promotes a shift to a slower myosin heavy chain fibre profile. Ribosome profiling reveals reduced overall translation efficiency in Bcl6-ablated muscles. Mechanistically, tandem chromatin immunoprecipitation, transcriptomic and translational analyses identify direct BCL6 repression of eukaryotic translation initiation factor 4E-binding protein 1 (Eif4ebp1) and activation of insulin-like growth factor 1 (Igf1) and androgen receptor (Ar). Together, these results uncover a bifunctional role for BCL6 in the transcriptional and translational control of muscle proteostasis.


Asunto(s)
Proteostasis , Proteínas Proto-Oncogénicas c-bcl-6 , Factores de Transcripción , Animales , Ratones , Inmunoprecipitación de Cromatina , Músculo Esquelético/metabolismo , Factores de Transcripción/metabolismo , Proteínas Proto-Oncogénicas c-bcl-6/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA