Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 198
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Genet ; 19(8): e1010842, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37531401

RESUMEN

Escherichia coli is both a highly prevalent commensal and a major opportunistic pathogen causing bloodstream infections (BSI). A systematic analysis characterizing the genomic determinants of extra-intestinal pathogenic vs. commensal isolates in human populations, which could inform mechanisms of pathogenesis, diagnostic, prevention and treatment is still lacking. We used a collection of 912 BSI and 370 commensal E. coli isolates collected in France over a 17-year period (2000-2017). We compared their pangenomes, genetic backgrounds (phylogroups, STs, O groups), presence of virulence-associated genes (VAGs) and antimicrobial resistance genes, finding significant differences in all comparisons between commensal and BSI isolates. A machine learning linear model trained on all the genetic variants derived from the pangenome and controlling for population structure reveals similar differences in VAGs, discovers new variants associated with pathogenicity (capacity to cause BSI), and accurately classifies BSI vs. commensal strains. Pathogenicity is a highly heritable trait, with up to 69% of the variance explained by bacterial genetic variants. Lastly, complementing our commensal collection with an older collection from 1980, we predict that pathogenicity continuously increased through 1980, 2000, to 2010. Together our findings imply that E. coli exhibit substantial genetic variation contributing to the transition between commensalism and pathogenicity and that this species evolved towards higher pathogenicity.


Asunto(s)
Infecciones por Escherichia coli , Sepsis , Humanos , Escherichia coli , Infecciones por Escherichia coli/genética , Infecciones por Escherichia coli/microbiología , Genes Bacterianos , Virulencia/genética , Sepsis/genética , Filogenia
2.
PLoS Genet ; 18(3): e1010112, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35324915

RESUMEN

Escherichia coli is an important cause of bloodstream infections (BSI), which is of concern given its high mortality and increasing worldwide prevalence. Finding bacterial genetic variants that might contribute to patient death is of interest to better understand infection progression and implement diagnostic methods that specifically look for those factors. E. coli samples isolated from patients with BSI are an ideal dataset to systematically search for those variants, as long as the influence of host factors such as comorbidities are taken into account. Here we performed a genome-wide association study (GWAS) using data from 912 patients with E. coli BSI from hospitals in Paris, France. We looked for associations between bacterial genetic variants and three patient outcomes (death at 28 days, septic shock and admission to intensive care unit), as well as two portals of entry (urinary and digestive tract), using various clinical variables from each patient to account for host factors. We did not find any association between genetic variants and patient outcomes, potentially confirming the strong influence of host factors in influencing the course of BSI; we however found a strong association between the papGII operon and entrance of E. coli through the urinary tract, which demonstrates the power of bacterial GWAS when applied to actual clinical data. Despite the lack of associations between E. coli genetic variants and patient outcomes, we estimate that increasing the sample size by one order of magnitude could lead to the discovery of some putative causal variants. Given the wide adoption of bacterial genome sequencing of clinical isolates, such sample sizes may be soon available.


Asunto(s)
Bacteriemia , Infecciones por Escherichia coli , Sepsis , Bacteriemia/epidemiología , Bacteriemia/genética , Bacteriemia/microbiología , Bacterias , Escherichia coli/genética , Infecciones por Escherichia coli/genética , Infecciones por Escherichia coli/microbiología , Estudio de Asociación del Genoma Completo , Humanos
3.
J Infect Dis ; 229(6): 1679-1687, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38214565

RESUMEN

BACKGROUND: Escherichia coli is frequently responsible for bloodstream infections (BSIs). Among digestive BSIs, biliary infections appear to be less severe. Respective roles of host factors, bacterial determinants (phylogroups, virulence, and antibiotic resistance), and portal of entry on outcome are unknown. METHODS: Clinical characteristics and prognosis of 770 episodes of E coli BSI were analyzed and isolates sequenced (Illumina technology) comparing phylogroups, multilocus sequence type, virulence, and resistance gene content. BSI isolates were compared with 362 commensal E coli from healthy subjects. RESULTS: Among 770 episodes, 135 were biliary, 156 nonbiliary digestive, and 479 urinary. Compared to urinary infections, BSIs of digestive origin occurred significantly more in men, comorbid, and immunocompromised patients. Digestive portal of entry was significantly associated with septic shock and death. Among digestive infections, patients with biliary infections were less likely to die (P = .032), despite comparable initial severity. Biliary E coli resembled commensals (phylogroup distribution, sequence type, and few virulence-associated genes) whereas nonbiliary digestive and urinary strains carried many virulence-associated genes. CONCLUSIONS: Escherichia coli strains responsible for biliary infections exhibit commensal characteristics and are associated with lower mortality rates, despite similar initial severity, than other digestive BSIs. Biliary drainage in addition to antibiotics in the management of biliary infections may explain improved outcome.


Asunto(s)
Bacteriemia , Infecciones por Escherichia coli , Escherichia coli , Humanos , Escherichia coli/genética , Escherichia coli/aislamiento & purificación , Escherichia coli/patogenicidad , Masculino , Infecciones por Escherichia coli/microbiología , Femenino , Persona de Mediana Edad , Bacteriemia/microbiología , Anciano , Adulto , Factores de Virulencia/genética , Antibacterianos/uso terapéutico , Antibacterianos/farmacología , Virulencia/genética , Anciano de 80 o más Años , Tipificación de Secuencias Multilocus , Infecciones Urinarias/microbiología , Enfermedades de las Vías Biliares/microbiología , Filogenia , Farmacorresistencia Bacteriana/genética
4.
Antimicrob Agents Chemother ; 68(4): e0145923, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38441061

RESUMEN

Beta-lactamase-mediated degradation of beta-lactams is the most common mechanism of beta-lactam resistance in Gram-negative bacteria. Beta-lactamase-encoding genes can be transferred between closely related bacteria, but spontaneous inter-phylum transfers (between distantly related bacteria) have never been reported. Here, we describe an extended-spectrum beta-lactamase (ESBL)-encoding gene (blaMUN-1) shared between the Pseudomonadota and Bacteroidota phyla. An Escherichia coli strain was isolated from a patient in Münster (Germany). Its genome was sequenced. The ESBL-encoding gene (named blaMUN-1) was cloned, and the corresponding enzyme was characterized. The distribution of the gene among bacteria was investigated using the RefSeq Genomes database. The frequency and relative abundance of its closest homolog in the global microbial gene catalog (GMGC) were analyzed. The E. coli strain exhibited two distinct morphotypes. Each morphotype possessed two chromosomal copies of the blaMUN-1 gene, with one morphotype having two additional copies located on a phage-plasmid p0111. Each copy was located within a 7.6-kb genomic island associated with mobility. blaMUN-1 encoded for an extended-spectrum Ambler subclass A2 beta-lactamase with 43.0% amino acid identity to TLA-1. blaMUN-1 was found in species among the Bacteroidales order and in Sutterella wadsworthensis (Pseudomonadota). Its closest homolog in GMGC was detected frequently in human fecal samples. This is, to our knowledge, the first reported instance of inter-phylum transfer of an ESBL-encoding gene, between the Bacteroidota and Pseudomonadota phyla. Although the gene was frequently detected in the human gut, inter-phylum transfer was rare, indicating that inter-phylum barriers are effective in impeding the spread of ESBL-encoding genes, but not entirely impenetrable.


Asunto(s)
Infecciones por Escherichia coli , Escherichia coli , Humanos , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Infecciones por Escherichia coli/microbiología , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana
5.
Antimicrob Agents Chemother ; 67(10): e0011123, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37702541

RESUMEN

Multiresistance plasmids belonging to the IncI incompatibility group have become one of the most pervasive plasmid types in extended-spectrum beta-lactamase-producing Escherichia coli of animal origin. The extent of the burden imposed on the bacterial cell by these plasmids seems to modulate the emergence of "epidemic" plasmids. However, in vivo data in the natural environment of the strains are scarce. Here, we investigated the cost of a bla CTX-M-1-IncI1 epidemic plasmid in a commensal E. coli animal strain, UB12-RC, before and after oral inoculation of 15 6- to 8-week- old specific-pathogen-free pigs. Growth rate in rich medium was determined on (i) UB12-RC and derivatives, with or without plasmid, in vivo and/or in vitro evolved, and (ii) strains that acquired the plasmid in the gut during the experiment. Although bla CTX-M-1-IncI1 plasmid imposed no measurable burden on the recipient strain after conjugation and during the longitudinal carriage in the pig's gut, we observed a significant difference in the bacterial growth rate between IncI1 plasmid-carrying and plasmid-free isolates collected during in vivo carriage. Only a few mutations on the chromosome of the UB12-RC derivatives were detected by whole-genome sequencing. RNA-Seq analysis of a selected set of these strains showed that transcriptional responses to the bla CTX-M-1-IncI1 acquisition were limited, affecting metabolism, stress response, and motility functions. Our data suggest that the effect of IncI plasmid on host cells is limited, fitness cost being insufficient to act as a barrier to IncI plasmid spread among natural population of E. coli in the gut niche.


Asunto(s)
Infecciones por Escherichia coli , Escherichia coli , Animales , Porcinos , Antibacterianos , Plásmidos/genética , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Infecciones por Escherichia coli/microbiología
6.
PLoS Genet ; 16(10): e1009065, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33112851

RESUMEN

The genus Escherichia is composed of several species and cryptic clades, including E. coli, which behaves as a vertebrate gut commensal, but also as an opportunistic pathogen involved in both diarrheic and extra-intestinal diseases. To characterize the genetic determinants of extra-intestinal virulence within the genus, we carried out an unbiased genome-wide association study (GWAS) on 370 commensal, pathogenic and environmental strains representative of the Escherichia genus phylogenetic diversity and including E. albertii (n = 7), E. fergusonii (n = 5), Escherichia clades (n = 32) and E. coli (n = 326), tested in a mouse model of sepsis. We found that the presence of the high-pathogenicity island (HPI), a ~35 kbp gene island encoding the yersiniabactin siderophore, is highly associated with death in mice, surpassing other associated genetic factors also related to iron uptake, such as the aerobactin and the sitABCD operons. We confirmed the association in vivo by deleting key genes of the HPI in E. coli strains in two phylogenetic backgrounds. We then searched for correlations between virulence, iron capture systems and in vitro growth in a subset of E. coli strains (N = 186) previously phenotyped across growth conditions, including antibiotics and other chemical and physical stressors. We found that virulence and iron capture systems are positively correlated with growth in the presence of numerous antibiotics, probably due to co-selection of virulence and resistance. We also found negative correlations between virulence, iron uptake systems and growth in the presence of specific antibiotics (i.e. cefsulodin and tobramycin), which hints at potential "collateral sensitivities" associated with intrinsic virulence. This study points to the major role of iron capture systems in the extra-intestinal virulence of the genus Escherichia.


Asunto(s)
Infecciones por Escherichia coli/genética , Escherichia coli/genética , Hierro/metabolismo , Sepsis/genética , Sideróforos/genética , Animales , Modelos Animales de Enfermedad , Escherichia coli/clasificación , Escherichia coli/patogenicidad , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/patología , Variación Genética/genética , Estudio de Asociación del Genoma Completo , Islas Genómicas/genética , Humanos , Ratones , Fenoles/metabolismo , Filogenia , Sepsis/microbiología , Sepsis/patología , Sideróforos/metabolismo , Tiazoles/metabolismo , Virulencia/genética
7.
PLoS Genet ; 16(6): e1008866, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32530914

RESUMEN

Escherichia coli is mostly a commensal of birds and mammals, including humans, where it can act as an opportunistic pathogen. It is also found in water and sediments. We investigated the phylogeny, genetic diversification, and habitat-association of 1,294 isolates representative of the phylogenetic diversity of more than 5,000 isolates from the Australian continent. Since many previous studies focused on clinical isolates, we investigated mostly other isolates originating from humans, poultry, wild animals and water. These strains represent the species genetic diversity and reveal widespread associations between phylogroups and isolation sources. The analysis of strains from the same sequence types revealed very rapid change of gene repertoires in the very early stages of divergence, driven by the acquisition of many different types of mobile genetic elements. These elements also lead to rapid variations in genome size, even if few of their genes rise to high frequency in the species. Variations in genome size are associated with phylogroup and isolation sources, but the latter determine the number of MGEs, a marker of recent transfer, suggesting that gene flow reinforces the association of certain genetic backgrounds with specific habitats. After a while, the divergence of gene repertoires becomes linear with phylogenetic distance, presumably reflecting the continuous turnover of mobile element and the occasional acquisition of adaptive genes. Surprisingly, the phylogroups with smallest genomes have the highest rates of gene repertoire diversification and fewer but more diverse mobile genetic elements. This suggests that smaller genomes are associated with higher, not lower, turnover of genetic information. Many of these genomes are from freshwater isolates and have peculiar traits, including a specific capsule, suggesting adaptation to this environment. Altogether, these data contribute to explain why epidemiological clones tend to emerge from specific phylogenetic groups in the presence of pervasive horizontal gene transfer across the species.


Asunto(s)
Escherichia coli/genética , Evolución Molecular , Transferencia de Gen Horizontal , Variación Genética , Genoma Bacteriano/genética , Animales , Animales Salvajes/microbiología , Australia , Pollos/microbiología , Farmacorresistencia Bacteriana/genética , Escherichia coli/aislamiento & purificación , Escherichia coli/patogenicidad , Heces/microbiología , Agua Dulce/microbiología , Tamaño del Genoma , Humanos , Enfermedades Inflamatorias del Intestino/microbiología , Secuencias Repetitivas Esparcidas/genética , Mucosa Intestinal/microbiología , Carne/microbiología , Anotación de Secuencia Molecular , Filogenia , Microbiología del Suelo , Factores de Virulencia/genética , Secuenciación Completa del Genoma
8.
Antimicrob Agents Chemother ; 66(3): e0197221, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35225650

RESUMEN

Chlorhexidine is a widely used antiseptic in hospital and community health care. Decreased susceptibility to this compound has been recently described in Klebsiella pneumoniae and Pseudomonas aeruginosa, together with cross-resistance to colistin. Surprisingly, few data are available for Escherichia coli, the main species responsible for community and health care-associated infections. In order to decipher chlorhexidine resistance mechanisms in E. coli, we studied both in vitro derived and clinical isolates through whole-genome sequence analysis. Comparison of strains grown in vitro under chlorhexidine pressure identified mutations in the gene mlaA coding for a phospholipid transport system. Phenotypic analyses of single-gene mutants from the Keio collection confirmed the role of this mutation in the decreased susceptibility to chlorhexidine. However, mutations in mlaA were not found in isolates from large clinical collections. In contrast, genome wide association studies (GWAS) showed that, in clinical strains, chlorhexidine reduced susceptibility was associated with the presence of tetA genes of class B coding for efflux pumps and located in a Tn10 transposon. Construction of recombinant strains in E. coli K-12 confirmed the role of tetA determinant in acquired resistance to both chlorhexidine and tetracycline. Our results reveal that two different evolutionary paths lead to chlorhexidine decreased susceptibility: one restricted to in vitro evolution conditions and involving a retrograde phospholipid transport system; the other observed in clinical isolates associated with efflux pump TetA. None of these mechanisms provide cross-resistance to colistin. This work demonstrates the GWAS power to identify new resistance mechanisms in bacterial species.


Asunto(s)
Escherichia coli , Resistencia a la Tetraciclina , Antibacterianos/farmacología , Clorhexidina/farmacología , Escherichia coli/genética , Estudio de Asociación del Genoma Completo , Pruebas de Sensibilidad Microbiana , Tetraciclina/farmacología , Resistencia a la Tetraciclina/genética
9.
Appl Environ Microbiol ; 88(15): e0066422, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35862685

RESUMEN

Escherichia coli is a commensal species of the lower intestine but is also a major pathogen causing intestinal and extraintestinal infections that is increasingly prevalent and resistant to antibiotics. Most studies on genomic evolution of E. coli used isolates from infections. Here, instead, we whole-genome sequenced a collection of 403 commensal E. coli isolates from fecal samples of healthy adult volunteers in France (1980 to 2010). These isolates were distributed mainly in phylogroups A and B2 (30% each) and belonged to 152 sequence types (STs), the five most frequent being ST10 (phylogroup A; 16.3%), ST73 and ST95 (phylogroup B2; 6.3 and 5.0%, respectively), ST69 (phylogroup D; 4.2%), and ST59 (phylogroup F; 3.9%), and 224 O:H serotypes. ST and serotype diversity increased over time. The O1, O2, O6, and O25 groups used in bioconjugate O-antigen vaccine against extraintestinal infections were found in 23% of the strains of our collection. The increase in frequency of virulence-associated genes and antibiotic resistance was driven by two evolutionary mechanisms. Evolution of virulence gene frequency was driven by both clonal expansion of STs with more virulence genes ("ST-driven") and increases in gene frequency within STs independent of changes in ST frequencies ("gene-driven"). In contrast, the evolution of resistance was dominated by increases in frequency within STs ("gene-driven"). This study provides a unique picture of the phylogenomic evolution of E. coli in its human commensal habitat over 30 years and will have implications for the development of preventive strategies. IMPORTANCE Escherichia coli is an opportunistic pathogen with the greatest burden of antibiotic resistance, one of the main causes of bacterial infections and an increasing concern in an aging population. Deciphering the evolutionary dynamics of virulence and antibiotic resistance in commensal E. coli is important to understand adaptation and anticipate future changes. The gut of vertebrates is the primary habitat of E. coli and probably where selection for virulence and resistance takes place. Unfortunately, most whole-genome-sequenced strains are isolated from pathogenic conditions. Here, we whole-genome sequenced 403 E. coli commensals isolated from healthy French subjects over a 30-year period. Virulence genes increased in frequency by both clonal expansion of clones carrying them and increases in frequency within clones, whereas resistance genes increased by within-clone increased frequency. Prospective studies of E. coli commensals should be performed worldwide to have a broader picture of evolution and adaptation of this species.


Asunto(s)
Infecciones por Escherichia coli , Escherichia coli , Anciano , Animales , Farmacorresistencia Bacteriana Múltiple/genética , Infecciones por Escherichia coli/epidemiología , Infecciones por Escherichia coli/microbiología , Humanos , Metagenómica , Filogenia , Estudios Prospectivos , Virulencia/genética , Factores de Virulencia/genética
10.
Environ Microbiol ; 23(11): 7139-7151, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34431197

RESUMEN

To get a global picture of the population structure of the Escherichia coli phylogroup E, encompassing the O157:H7 EHEC lineage, we analysed the whole genome of 144 strains isolated from various continents, hosts and lifestyles and representative of the phylogroup diversity. The strains possess 4331 to 5440 genes with a core genome of 2771 genes and a pangenome of 33 722 genes. The distribution of these genes among the strains shows an asymmetric U-shaped distribution. E phylogenetic strains have the largest genomes of the species, partly explained by the presence of mobile genetic elements. Sixty-eight lineages were delineated, some of them exhibiting extra-intestinal virulence genes and being virulent in the mouse sepsis model. Except for the EHEC lineages and the reference EPEC, EIEC and ETEC strains, very few strains possess intestinal virulence genes. Most of the strains were devoid of acquired resistance genes, but eight strains possessed extended-spectrum beta-lactamase genes. Human strains belong to specific lineages, some of them being virulent and antibiotic-resistant [sequence type complexes (STcs) 350 and 2064]. The E phylogroup mimics all the features of the species as a whole, a phenomenon already observed at the STc level, arguing for a fractal population structure of E. coli.


Asunto(s)
Infecciones por Escherichia coli , Proteínas de Escherichia coli , Animales , Escherichia coli , Proteínas de Escherichia coli/genética , Ratones , Filogenia , Virulencia/genética , Factores de Virulencia/genética
11.
Appl Environ Microbiol ; 87(24): e0135821, 2021 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-34613750

RESUMEN

Intestinal carriage of extended spectrum ß-lactamase (ESBL)-producing Escherichia coli is a frequent, increasing, and worrying phenomenon, but little is known about the molecular scenario and the evolutionary forces at play. We screened 45 veal calves, known to have high prevalence of carriage, for ESBL-producing E. coli on 514 rectal swabs (one randomly selected colony per sample) collected over 6 months. We characterized the bacterial clones and plasmids carrying blaESBL genes with a combination of genotyping methods, whole genome sequencing, and conjugation assays. One hundred and seventy-three ESBL-producing E. coli isolates [blaCTX-M-1 (64.7%), blaCTX-M-14 (33.5%), or blaCTX-M-15 (1.8%)] were detected, belonging to 32 bacterial clones, mostly of phylogroup A. Calves were colonized successively by different clones with a trend in decreasing carriage. The persistence of a clone in a farm was significantly associated with the number of calves colonized. Despite a high diversity of E. coli clones and blaCTX-M-carrying plasmids, few blaCTX-M gene/plasmid/chromosomal background combinations dominated, due to (i) efficient colonization of bacterial clones and/or (ii) successful plasmid spread in various bacterial clones. The scenario "clone versus plasmid spread" depended on the farm. Thus, epistatic interactions between resistance genes, plasmids, and bacterial clones contribute to optimize fitness in specific environments. IMPORTANCE The gut microbiota is the epicenter of the emergence of resistance. Considerable amount of knowledge on the molecular mechanisms of resistance has been accumulated, but the ecological and evolutionary forces at play in nature are less studied. In this context, we performed a field work on temporal intestinal carriage of extended spectrum ß-lactamase (ESBL)-producing Escherichia coli in veal farms. Veal calves are animals with one of the highest levels of ESBL producing E. coli fecal carriage, due to early high antibiotic exposure. We were able to show that calves were colonized successively by different ESBL-producing E. coli clones, and that two main scenarios were at play in the spread of blaCTX-M genes among calves: efficient colonization of several calves by a few bacterial clones and successful plasmid spread in various bacterial clones. Such knowledge should help develop new strategies to fight the emergence of antibiotic-resistance.


Asunto(s)
Antibacterianos , Farmacorresistencia Bacteriana/genética , Escherichia coli , Plásmidos , Carne Roja , Animales , Antibacterianos/farmacología , Bovinos/microbiología , Células Clonales , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Plásmidos/genética , Carne Roja/microbiología , beta-Lactamasas/genética
12.
Infect Immun ; 88(12)2020 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-32989036

RESUMEN

Escherichia coli O25b:H4 sequence type 131 (ST131), which is resistant to fluoroquinolones and which is a producer of CTX-M-15, is globally one of the major extraintestinal pathogenic E. coli (ExPEC) lineages. Phylogenetic analyses showed that multidrug-resistant ST131 strains belong to clade C, which recently emerged from clade B by stepwise evolution. It has been hypothesized that features other than multidrug resistance could contribute to this dissemination since other major global ExPEC lineages (ST73 and ST95) are mostly antibiotic susceptible. To test this hypothesis, we compared early biofilm production, presence of ExPEC virulence factors (VFs), and in vivo virulence in a mouse sepsis model in 19 and 20 epidemiologically relevant strains of clades B and C, respectively. Clade B strains were significantly earlier biofilm producers (P < 0.001), carriers of more VFs (P = 4e-07), and faster killers of mice (P = 2e-10) than clade C strains. Gene inactivation experiments showed that the H30-fimB and ibeART genes were associated with in vivo virulence. Competition assays in sepsis, gut colonization, and urinary tract infection models between the most anciently diverged strain (B1 subclade), one C1 subclade strain, and a B4 subclade recombining strain harboring some clade C-specific genetic events showed that the B1 strain always outcompeted the C1 strain, whereas the B4 strain outcompeted the C1 strain, depending on the mouse niches. All these findings strongly suggest that clade C evolution includes a progressive loss of virulence involving multiple genes, possibly enhancing overall strain fitness by avoiding severe infections, even if it comes at the cost of a lower colonization ability.


Asunto(s)
Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Escherichia coli Patógena Extraintestinal/genética , Sepsis/microbiología , Factores de Virulencia/genética , Virulencia/genética , Animales , Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Escherichia coli/patogenicidad , Proteínas de Escherichia coli/metabolismo , Evolución Molecular , Escherichia coli Patógena Extraintestinal/efectos de los fármacos , Escherichia coli Patógena Extraintestinal/patogenicidad , Genotipo , Integrasas/genética , Integrasas/metabolismo , Estimación de Kaplan-Meier , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Fenotipo , Infecciones Urinarias/microbiología , Secuenciación Completa del Genoma
13.
J Antimicrob Chemother ; 75(7): 1726-1735, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32300786

RESUMEN

BACKGROUND: The resistance to all aminoglycosides (AGs) conferred by 16S rRNA methyltransferase enzymes (16S-RMTases) is a major public health concern. OBJECTIVES: To characterize the resistance genotype, its genetic environment and plasmid support, and the phylogenetic relatedness of 16S-RMTase-producing Escherichia coli from France. METHODS: We screened 137 E. coli isolates resistant to all clinically relevant AGs from nine Parisian hospitals for 16S-RMTases. WGS was performed on clinical isolates with high-level AG resistance (MIC ≥256 mg/L) and their transformants. RESULTS: Thirty of the 137 AG-resistant E. coli produced 16S-RMTases: 11 ArmA, 18 RmtB and 1 RmtC. The 16S-RMTase producers were also resistant to third-generation cephalosporins (90% due to a blaCTX-M gene), co-trimoxazole, fluoroquinolones and carbapenems (blaNDM and blaVIM genes) in 97%, 83%, 70% and 10% of cases, respectively. Phylogenomic diversity was high in ArmA producers, with 10 different STs, but a similar genetic environment, with the Tn1548 transposon carried by a plasmid closely related to pCTX-M-3 in 6/11 isolates. Conversely, RmtB producers belonged to 12 STs, the most frequent being ST405 and ST complex (STc) 10 (four and four isolates, respectively). The rmtB gene was carried by IncF plasmids in 10 isolates and was found in different genetic environments. The rmtC gene was carried by the pNDM-US plasmid. CONCLUSIONS: ArmA and RmtB are the predominant 16S-RMTases in France, but their spread follows two different patterns: (i) dissemination of a conserved genetic support carrying armA in E. coli with high levels of genomic diversity; and (ii) various genetic environments surrounding rmtB in clonally related E. coli.


Asunto(s)
Farmacorresistencia Bacteriana , Escherichia coli , Antibacterianos/farmacología , Farmacorresistencia Bacteriana/genética , Escherichia coli/genética , Francia , Genómica , Metiltransferasas/genética , Pruebas de Sensibilidad Microbiana , Filogenia , Plásmidos/genética , ARN Ribosómico 16S/genética , beta-Lactamasas/genética
14.
Anesthesiology ; 132(4): 825-838, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32101976

RESUMEN

BACKGROUND: High-density lipoproteins exert pleiotropic effects including antiinflammatory, antiapoptotic, and lipopolysaccharide-neutralizing properties. The authors assessed the effects of reconstituted high-density lipoproteins (CSL-111) intravenous injection in different models of sepsis. METHODS: Ten-week-old C57BL/6 mice were subjected to sepsis by cecal ligation and puncture or intraperitoneal injection of Escherichia coli or Pseudomonas aeruginosa pneumonia. CSL-111 or saline solution was administrated 2 h after the sepsis. Primary outcome was survival. Secondary outcomes were plasma cell-free DNA and cytokine concentrations, histology, bacterial count, and biodistribution. RESULTS: Compared with saline, CSL-111 improved survival in cecal ligation and puncture and intraperitoneal models (13 of 16 [81%] survival rate vs. 6 of 16 [38%] in the cecal ligation and puncture model; P = 0.011; 4 of 10 [40%] vs. 0 of 10 [0%] in the intraperitoneal model; P = 0.011). Cell-free DNA concentration was lower in CSL-111 relative to saline groups (68 [24 to 123] pg/ml vs. 351 [333 to 683] pg/ml; P < 0.001). Mice injected with CSL-111 presented a decreased bacterial count at 24 h after the cecal ligation and puncture model both in plasma (200 [28 to 2,302] vs. 2,500 [953 to 3,636] colony-forming unit/ml; P = 0.021) and in the liver (1,359 [360 to 1,648] vs. 1,808 [1,464 to 2,720] colony-forming unit/ml; P = 0.031). In the pneumonia model, fewer bacteria accumulated in liver and lung of the CSL-111 group. CSL-111-injected mice had also less lung inflammation versus saline mice (CD68+ to total cells ratio: saline, 0.24 [0.22 to 0.27]; CSL-111, 0.07 [0.01 to 0.09]; P < 0.01). In all models, no difference was found for cytokine concentration. Indium bacterial labeling underlined a potential hepatic bacterial clearance possibly promoted by high-density lipoprotein uptake. CONCLUSIONS: CSL-111 infusion improved survival in different experimental mouse models of sepsis. It reduced inflammation in both plasma and organs and decreased bacterial count. These results emphasized the key role for high-density lipoproteins in endothelial and organ protection, but also in lipopolysaccharide/bacteria clearance. This suggests an opportunity to explore the therapeutic potential of high-density lipoproteins in septic conditions.


Asunto(s)
HDL-Colesterol/administración & dosificación , Modelos Animales de Enfermedad , Lipoproteínas HDL/administración & dosificación , Fosfatidilcolinas/administración & dosificación , Sepsis/tratamiento farmacológico , Sepsis/metabolismo , Animales , HDL-Colesterol/química , Femenino , Humanos , Lipoproteínas HDL/química , Masculino , Ratones , Ratones Endogámicos C57BL , Fosfatidilcolinas/química , Distribución Tisular/efectos de los fármacos , Distribución Tisular/fisiología
15.
Emerg Infect Dis ; 25(4): 710-718, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30882313

RESUMEN

In a prospective, nationwide study in France of Escherichia coli responsible for pneumonia in patients receiving mechanical ventilation, we determined E. coli antimicrobial susceptibility, phylotype, O-type, and virulence factor gene content. We compared 260 isolates with those of 2 published collections containing commensal and bacteremia isolates. The preponderant phylogenetic group was B2 (59.6%), and the predominant sequence type complex (STc) was STc73. STc127 and STc141 were overrepresented and STc95 underrepresented in pneumonia isolates compared with bacteremia isolates. Pneumonia isolates carried higher proportions of virulence genes sfa/foc, papGIII, hlyC, cnf1, and iroN compared with bacteremia isolates. Virulence factor gene content and antimicrobial drug resistance were higher in pneumonia than in commensal isolates. Genomic and phylogenetic characteristics of E. coli pneumonia isolates from critically ill patients indicate that they belong to the extraintestinal pathogenic E. coli pathovar but have distinguishable lung-specific traits.


Asunto(s)
Infecciones por Escherichia coli/epidemiología , Infecciones por Escherichia coli/microbiología , Escherichia coli/clasificación , Escherichia coli/genética , Filogenia , Neumonía Bacteriana/epidemiología , Neumonía Bacteriana/microbiología , Virulencia/genética , Antibacterianos/farmacología , Farmacorresistencia Bacteriana , Escherichia coli/efectos de los fármacos , Escherichia coli/patogenicidad , Infecciones por Escherichia coli/historia , Francia/epidemiología , Genes Bacterianos , Historia del Siglo XXI , Humanos , Pruebas de Sensibilidad Microbiana , Tipificación Molecular , Neumonía Bacteriana/historia , Vigilancia en Salud Pública , Serogrupo , Factores de Virulencia/genética
16.
Artículo en Inglés | MEDLINE | ID: mdl-31209009

RESUMEN

The plasmid-located mcr-9 gene, encoding a putative phosphoethanolamine transferase, was identified in a colistin-resistant human fecal Escherichia coli strain belonging to a very rare phylogroup, the D-ST69-O15:H6 clone. This MCR-9 protein shares 33% to 65% identity with the other plasmid-encoded MCR-type enzymes identified (MCR-1 to -8) that have been found as sources of acquired resistance to polymyxins in Enterobacteriaceae Analysis of the lipopolysaccharide of the MCR-9-producing isolate revealed a function similar to that of MCR-1 by adding a phosphoethanolamine group to lipid A and subsequently modifying the structure of the lipopolysaccharide. However, a minor impact on susceptibility to polymyxins was noticed once the mcr-9 gene was cloned and produced in an E. coli K-12-derived strain. Nevertheless, we showed here that subinhibitory concentrations of colistin induced the expression of the mcr-9 gene, leading to increased MIC levels. This inducible expression was mediated by a two-component regulatory system encoded by the qseC and qseB genes located downstream of mcr-9 Genetic analysis showed that the mcr-9 gene was carried by an IncHI2 plasmid. In silico analysis revealed that the plasmid-encoded MCR-9 shared significant amino acid identity (ca. 80%) with the chromosomally encoded MCR-like proteins from Buttiauxella spp. In particular, Buttiauxella gaviniae was found to harbor a gene encoding MCR-BG, sharing 84% identity with MCR-9. That gene was neither expressed nor inducible in its original host, which was fully susceptible to polymyxins. This work showed that mcr genes may circulate silently and remain undetected unless induced by colistin.


Asunto(s)
Escherichia coli/enzimología , Etanolaminofosfotransferasa/metabolismo , Antibacterianos/farmacología , Colistina/farmacología , Farmacorresistencia Bacteriana/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Etanolaminofosfotransferasa/genética , Pruebas de Sensibilidad Microbiana , Plásmidos/genética , Polimixinas/farmacología
17.
Artículo en Inglés | MEDLINE | ID: mdl-31332067

RESUMEN

Despite a fitness cost imposed on bacterial hosts, large conjugative plasmids play a key role in the diffusion of resistance determinants, such as CTX-M extended-spectrum ß-lactamases. Among the large conjugative plasmids, IncF plasmids are the most predominant group, and an F2:A1:B- IncF-type plasmid encoding a CTX-M-15 variant was recently described as being strongly associated with the emerging worldwide Escherichia coli sequence type 131 (ST131)-O25b:H4 H30Rx/C2 sublineage. In this context, we investigated the fitness cost of narrow-range F-type plasmids, including the F2:A1:B- IncF-type CTX-M-15 plasmid, and of broad-range C-type plasmids in the K-12-like J53-2 E. coli strain. Although all plasmids imposed a significant fitness cost to the bacterial host immediately after conjugation, we show, using an experimental-evolution approach, that a negative impact on the fitness of the host strain was maintained throughout 1,120 generations with the IncC-IncR plasmid, regardless of the presence or absence of cefotaxime, in contrast to the F2:A1:B- IncF plasmid, whose cost was alleviated. Many chromosomal and plasmid rearrangements were detected after conjugation in transconjugants carrying the IncC plasmids but not in transconjugants carrying the F2:A1:B- IncF plasmid, except for insertion sequence (IS) mobilization from the fliM gene leading to the restoration of motility of the recipient strains. Only a few mutations occurred on the chromosome of each transconjugant throughout the experimental-evolution assay. Our findings indicate that the F2:A1:B- IncF CTX-M-15 plasmid is well adapted to the E. coli strain studied, contrary to the IncC-IncR CTX-M-15 plasmid, and that such plasmid-host adaptation could participate in the evolutionary success of the CTX-M-15-producing pandemic E. coli ST131-O25b:H4 lineage.


Asunto(s)
Escherichia coli/enzimología , Escherichia coli/genética , Plásmidos/genética , beta-Lactamasas/metabolismo , Antibacterianos/farmacología , Cefotaxima/farmacología , Escherichia coli/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Mutación/genética , beta-Lactamasas/genética
18.
Artículo en Inglés | MEDLINE | ID: mdl-30936104

RESUMEN

Ceftriaxone has a higher biliary elimination than cefotaxime (40% versus 10%), which may result in a more pronounced impact on the intestinal microbiota. We performed a monocenter, randomized open-label clinical trial in 22 healthy volunteers treated by intravenous ceftriaxone (1 g/24 h) or cefotaxime (1 g/8 h) for 3 days. We collected fecal samples for phenotypic analyses, 16S rRNA gene profiling, and measurement of the antibiotic concentration and compared the groups for the evolution of microbial counts and indices of bacterial diversity over time. Plasma samples were drawn at day 3 for pharmacokinetic analysis. The emergence of 3rd-generation-cephalosporin-resistant Gram-negative enteric bacilli (Enterobacterales), Enterococcus spp., or noncommensal microorganisms was not significantly different between the groups. Both antibiotics reduced the counts of total Gram-negative enteric bacilli and decreased the bacterial diversity, but the differences between the groups were not significant. All but one volunteer from each group exhibited undetectable levels of antibiotic in feces. Plasma pharmacokinetic endpoints were not correlated to alteration of the bacterial diversity of the gut. Both antibiotics markedly impacted the intestinal microbiota, but no significant differences were detected when standard clinical doses were administered for 3 days. This might be related to the similar daily amounts of antibiotics excreted through the bile using a clinical regimen. (This study has been registered at ClinicalTrials.gov under identifier NCT02659033.).


Asunto(s)
Antibacterianos/uso terapéutico , Cefotaxima/farmacología , Ceftriaxona/uso terapéutico , Microbioma Gastrointestinal/efectos de los fármacos , Bacterias Gramnegativas/efectos de los fármacos , Adolescente , Adulto , Cefalosporinas/uso terapéutico , Heces , Femenino , Infecciones por Bacterias Gramnegativas/tratamiento farmacológico , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , ARN Ribosómico 16S/efectos de los fármacos , Adulto Joven
19.
Artículo en Inglés | MEDLINE | ID: mdl-31138573

RESUMEN

We previously identified an operon involved in an arginine deiminase (ADI) pathway (arc operon) on a CTX-M-producing plasmid from an O102-ST405 strain of Escherichia coli As the ADI pathway was shown to be involved in the virulence of various Gram-positive bacteria, we tested whether the ADI pathway could be involved in the epidemiological success of extended-spectrum-ß-lactamase (ESBL)-producing E. coli strains. We studied two collections of human E. coli isolated in France (n = 493) and England (n = 1,509) and show that the prevalence of the arc operon (i) is higher in ESBL-producing strains (12.1%) than in nonproducers (2.5%), (ii) is higher in CTX-M-producing strains (16%) than in other ESBL producers (3.5%), and (iii) increased over time in ESBL-producing strains from 0% before 2000 to 43.3% in 2011 to 2012. The arc operon, found in strains from various phylogenetic backgrounds, is carried by IncF plasmids (85%) or chromosomes (15%) in regions framed by numerous insertion sequences, indicating multiple arrivals. Competition experiments showed that the arc operon enhances fitness of the strain in vitro in lysogeny broth with arginine. In vivo competition experiments showed that the arc operon is advantageous for the strain in a mouse model of urinary tract infection (UTI), whereas it is a burden in a mouse model of intestinal colonization. In summary, we have identified a trait linked to CTX-M-producing strains that is responsible for a trade-off between two main E. coli lifestyles, UTI and gut commensalism. This trait alone cannot explain the wide spread of ESBLs in E. coli but merits epidemiological surveillance.


Asunto(s)
Escherichia coli/genética , Hidrolasas/genética , Operón/genética , beta-Lactamasas/genética , Animales , Inglaterra , Infecciones por Escherichia coli/microbiología , Francia , Humanos , Ratones , Pruebas de Sensibilidad Microbiana/métodos , Filogenia , Plásmidos/genética , Infecciones Urinarias/microbiología
20.
Environ Microbiol ; 21(8): 3107-3117, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31188527

RESUMEN

The phylogeny of the Escherichia coli species, with the identification of seven phylogroups (A, B1, B2, C, D, E and F), is linked to the lifestyle of the strains. With the accumulation of whole genome sequence data, it became clear that some strains belong to a group intermediate between the F and B2 phylogroups, designated as phylogroup G. Here, we studied the complete sequences of 112 strains representative of the G phylogroup diversity and showed that it is composed of one main sequence type complex (STc)117 and four other STcs (STc657, STc454, STc738 and STc174). STc117, which phylogeny is characterized by very short internal branches, exhibits extensive O diversity, but little H-type and fimH allele diversity, whereas the other STcs are characterized by a main O, H and fimH type. STc117 strains possess many traits associated with extra-intestinal virulence, are virulent in a mouse sepsis model and exhibit multi-drug resistance such as CTX-M production. Epidemiologic data on 4,524 Australian and French strains suggest that STc117 is a poultry-associated lineage that can also establish in humans and cause extra-intestinal diseases. We propose an easy identification method that will help to trace this potentially virulent and resistant phylogroup in epidemiologic studies.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana , Infecciones por Escherichia coli/microbiología , Escherichia coli/genética , Escherichia coli/patogenicidad , Animales , Australia , Farmacorresistencia Microbiana , Escherichia coli/efectos de los fármacos , Regulación Bacteriana de la Expresión Génica , Humanos , Ratones , Filogenia , Virulencia , Factores de Virulencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA