RESUMEN
Analysis of T-cell receptor (TCR) repertoires in different stages of hepatocellular carcinoma (HCC) might help to elucidate its pathogenesis and progression. This study aimed to investigate TCR profiles in liver biopsies and peripheral blood mononuclear cells (PBMCs) in different Barcelona Clinic liver cancer (BCLC) stages of HCC. Ten patients in early stage (BCLC_A), 10 patients in middle stage (BCLC_B), and 10 patients in late stage (BCLC_C) cancer were prospectively enrolled. The liver tumor tissues, adjacent tissues, and PBMCs of each patient were collected and examined by TCR ß sequencing. Based on the ImMunoGeneTics (IMGT) database, we aligned the V, D, J, and C gene segments and identified the frequency of CDR3 sequences and amino acids sequence. Diversity of TCR in PBMCs was higher than in both tumor tissues and adjacent tissues, regardless of BCLC stage and postoperative recurrence. TCR clonality was increased in T cells from peripheral blood in advanced HCC, compared with the early and middle stages. No statistical differences were observed between different BCLC stages, either in tumors or adjacent tissues. TCR clonality revealed no significant difference between recurrent tumor and non-recurrent tumor, therefore PBMCs was better to be representative of TCR characteristics in different stages of HCC compared to tumor tissues. Clonal expansion of T cells was associated with low risk of recurrence in HCC patients.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Leucocitos Mononucleares/patología , Resultado del Tratamiento , Estadificación de Neoplasias , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/patología , Receptores de Antígenos de Linfocitos T/genética , Estudios RetrospectivosRESUMEN
This study aimed to assess the diagnostic accuracy of radiomics for predicting osteoporosis and the quality of radiomic studies. The study protocol was prospectively registered on PROSPERO (CRD42023425058). We searched PubMed, EMBASE, Web of Science, and Cochrane Library databases from inception to June 1, 2023, for eligible articles that applied radiomic techniques to diagnosing osteoporosis or abnormal bone mass. Quality and risk of bias of the included studies were evaluated with radiomics quality score (RQS), METhodological RadiomICs Score (METRICS), and Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) tools. The data analysis utilized the R program with mada, metafor, and meta packages. Ten retrospective studies with 5926 participants were included in the systematic review and meta-analysis. The overall risk of bias and applicability concerns for each domain of the studies were rated as low, except for one study which was considered to have a high risk of flow and time bias. The mean METRICS score was 70.1% (range 49.6-83.2%). There was moderate heterogeneity across studies and meta-regression identified sources of heterogeneity in the data, including imaging modality, feature selection method, and classifier. The pooled diagnostic odds ratio (DOR) under the bivariate random effects model across the studies was 57.22 (95% CI 27.62-118.52). The pooled sensitivity and specificity were 87% (95% CI 81-92%) and 87% (95% CI 77-93%), respectively. The area under the summary receiver operating characteristic curve (AUC) of the radiomic models was 0.94 (range 0.8 to 0.98). The results supported that the radiomic techniques had good accuracy in diagnosing osteoporosis or abnormal bone mass. The application of radiomics in osteoporosis diagnosis needs to be further confirmed by more prospective studies with rigorous adherence to existing guidelines and multicenter validation.
Asunto(s)
Densidad Ósea , Osteoporosis , Humanos , Osteoporosis/diagnóstico por imagen , Densidad Ósea/fisiología , Tomografía Computarizada por Rayos X/métodos , Absorciometría de Fotón/métodos , Imagen por Resonancia Magnética/métodos , Sensibilidad y Especificidad , Adulto , RadiómicaRESUMEN
Post-stroke emotional disorders such as post-stroke anxiety and post-stroke depression are typical symptoms in patients with stroke. They are closely associated with poor prognosis and low quality of life. The State Food and Drug Administration of China has approved DL-3-n-butylphthalide (NBP) as a treatment for ischemic stroke (IS). Clinical research has shown that NBP alleviates anxiety and depressive symptoms in patients with IS. Therefore, this study explored the role and molecular mechanisms of NBP in cases of post-stroke emotional disorders using network pharmacology and experimental validation. The results showed that NBP treatment significantly increased the percentage of time spent in the center of the middle cerebral artery occlusion (MCAO) rats in the open field test and the percentage of sucrose consumption in the sucrose preference test. Network pharmacology results suggest that NBP may regulate neuroinflammation and cell death. Further experiments revealed that NBP inhibited the toll-like receptor 4/nuclear factor kappa B signaling pathway, decreased the level of pro-inflammatory cytokines, including tumor necrosis factor-α, interleukin-1ß, and interleukin-6, and M1-type microglia markers (CD68, inducible nitric oxide synthase), and reduced the expression of PANoptosis-related molecules including caspase-1, caspase-3, caspase-8, gasdermin D, and mixed lineage kinase domain-like protein in the hippocampus of the MACO rats. These findings demonstrate that the mechanisms through which NBP ameliorates post-stroke emotional disorders in rats are associated with inhibiting neuroinflammation and PANoptosis, providing a new strategy and experimental basis for treating post-stroke emotional disorders.
Asunto(s)
Benzofuranos , Infarto de la Arteria Cerebral Media , Enfermedades Neuroinflamatorias , Ratas Sprague-Dawley , Animales , Benzofuranos/uso terapéutico , Benzofuranos/farmacología , Masculino , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Ratas , Microglía/efectos de los fármacos , Microglía/metabolismo , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/complicaciones , Farmacología en Red , Fármacos Neuroprotectores/uso terapéutico , Fármacos Neuroprotectores/farmacología , Citocinas/metabolismo , FN-kappa B/metabolismoRESUMEN
INTRODUCTION: Polycystic ovary syndrome (PCOS) is associated with a wide range of unfavorable cardiometabolic risk factors, including obesity, hypertension, insulin resistance, impaired glucose metabolism, dyslipidemia, and metabolic syndrome. Compared with women with regular menstrual cycles, women with a history of irregular menstrual periods have an increased unfavorable cardiometabolic risk. Recently, the association between the severity of oligomenorrhea and hyperinsulinemia and insulin resistance has been demonstrated. However, evidence linking the severity of menstrual cyclicity with cardiometabolic risk in PCOS women is scarce. MATERIAL AND METHODS: This work was a prospective cross-sectional study. A total of 154 women diagnosed with PCOS by the Rotterdam criteria were recruited from July 2021 to September 2022. PCOS women with eumenorrheic (eumeno group), oligomenorrhea (oligo group), and amenorrhea (ameno group) underwent history and physical examination, gonadal steroid hormone measurement, lipid profile, oral glucose tolerance test, and homeostasis model assessment of insulin resistance. RESULTS: A trend toward an increase in unfavorable cardiometabolic risk markers including obesity, hypertension, prevalence of insulin resistance, prediabetes, dyslipidemia, and metabolic syndrome was observed in the ameno group (n = 57) as compared with the eumeno (n = 24) or oligo group (n = 73). A higher prevalence of insulin resistance (odds ratio [OR]: 3.02; 95% confidence interval [CI]: 1.03-8.81) and prediabetes (OR: 3.94; 95% CI: 1.01-15.40) was observed in the ameno group than in the eumeno group, and a higher proportion of dyslipidemia (OR: 2.44; 95% CI: 1.16-5.15) was observed in the ameno group than in the oligo group in the binary logistic regression analysis after adjusting for confounding factors. CONCLUSIONS: PCOS women with amenorrhea show a higher prevalence of insulin resistance, prediabetes, and dyslipidemia compared with those with oligomenorrhea or eumenorrhea. The severity of menstrual dysfunction could be used as a readily obtainable marker for the identification of PCOS women at greatest risk of cardiometabolic diseases.
Asunto(s)
Factores de Riesgo Cardiometabólico , Trastornos de la Menstruación , Síndrome del Ovario Poliquístico , Humanos , Femenino , Síndrome del Ovario Poliquístico/complicaciones , Síndrome del Ovario Poliquístico/sangre , Síndrome del Ovario Poliquístico/epidemiología , Adulto , Estudios Transversales , Estudios Prospectivos , Trastornos de la Menstruación/epidemiología , Resistencia a la Insulina , Síndrome Metabólico/epidemiología , Oligomenorrea/epidemiología , Índice de Severidad de la Enfermedad , Dislipidemias/epidemiología , Biomarcadores/sangre , Adulto Joven , Factores de RiesgoRESUMEN
Cronobacter species are potential pathogens that can contaminate powdered infant formula. C. sakazakii and C. malonaticus are the most common species of Cronobacter associated with infections. This study mined new molecular targets for the detection of C. sakazakii and C. malonaticus by using comparative genome approaches. Specific target genes mngB and ompR were obtained and used to detect C. sakazakii and C. malonaticus, respectively. A novel detection method, termed ladder-shape melting temperature isothermal amplification (LMTIA), was developed and evaluated. The detection limit for pure C. sakazakii DNA was 1 pg per reaction and 1 fg per reaction for C. malonaticus. The C. sakazakii, C. malonaticus, and the reference stains were all correctly identified. The amplicons can be successfully visualized and identified by naked eyes when hydroxy naphthol blue dye (HNB dye) was used in the reaction. Therefore, the LMTIA assays developed in this study showed potential application for microorganism identification and detection.
Asunto(s)
Cronobacter sakazakii , Cronobacter , ADN Bacteriano , Técnicas de Amplificación de Ácido Nucleico , Técnicas de Amplificación de Ácido Nucleico/métodos , Cronobacter sakazakii/genética , Cronobacter sakazakii/aislamiento & purificación , Cronobacter sakazakii/clasificación , Cronobacter/genética , Cronobacter/aislamiento & purificación , Cronobacter/clasificación , ADN Bacteriano/genética , Genoma Bacteriano , Fórmulas Infantiles/microbiología , Microbiología de Alimentos , Humanos , Contaminación de Alimentos/análisis , Límite de Detección , Técnicas de Diagnóstico Molecular/métodos , NaftalenosulfonatosRESUMEN
Aqueous zinc-ion batteries (ZIBs) have attracted burgeoning attention and emerged as prospective alternatives for scalable energy storage applications due to their unique merits such as high volumetric capacity, low cost, environmentally friendly, and reliable safety. Nevertheless, current ZIBs still suffer from some thorny issues, including low intrinsic electron conductivity, poor reversibility, zinc anode dendrites, and side reactions. Herein, conductive polyaniline (PANI) is intercalated as a pillar into the hydrated V2O5 (PAVO) to stabilize the structure of the cathode material. Meanwhile, graphene oxide (GO) was modified onto the glass fiber (GF) membrane through simple electrospinning and laser reduction methods to inhibit dendrite growth. As a result, the prepared cells present excellent electrochemical performance with enhanced specific capacity (362 mAh g-1 at 0.1 A g-1), significant rate capability (280 mAh g-1 at 10 A g-1), and admirable cycling stability (74% capacity retention after 4800 cycles at 5 A g-1). These findings provide key insights into the development of high-performance zinc-ion batteries.
RESUMEN
BACKGROUND: This study aimed to determine the correlation between human-immunodeficiency-virus (HIV) infection and stroke, as well as to estimate the global, regional, and national burden of HIV-associated stroke. METHODS: A registered meta-analysis was performed by searching PubMed, Embase, and Web of Science for relevant literature up to October 31, 2022. The pooled relative risk of stroke in HIV-infected people was calculated using a random-effects model. HIV prevalence and disability-adjusted life years (DALYs) datasets were obtained from the Joint United Nations Program on HIV and AIDS, and the Global Health Data Exchange, respectively. The population attributable fraction was estimated and delivered to calculate the HIV-associated DALYs of stroke from 1990 to 2019, at the global, regional, and national levels. Pearson correlation analysis were conducted to assess the correlation between the age-standardized rate or estimated annual percentage changes and the sociodemographic index. RESULTS: Out of 10â 080 identified studies, 11 were included in this meta-analysis. Compared with individuals without HIV-infection, the pooled relative risk of stroke in HIV-infected individuals was 1.40 (95% CI, 1.18-1.65). From 1990 to 2019, the global population attributable fraction of HIV-associated stroke increased almost 3-fold, while the HIV-associated DALYs increased from 18 595 (95% CI, 7485-31â 196) in 1990 to 60â 684 (95% CI, 24â 281-101â 894) in 2019. Meanwhile, HIV-associated DALYs varied by region, with Eastern and Southern Africa having the highest value of 126â 160 in 2019. Moreover, countries with middle social development index were shouldering the highest increase trend of the HIV-associated DALYs age-standardized rates. CONCLUSIONS: HIV-infected individuals face a significantly higher risk of stroke, and the global burden of HIV-associated stroke has increased over the past 3 decades, showing regional variations. Eastern and Southern Africa bear the highest burden, while Eastern Europe and Central Asia have seen significant growth. Health care providers, researchers, and decision-makers should give increased attention to stroke prevention and management in HIV-endemic areas. REGISTRATION: URL: https://www. CLINICALTRIALS: gov; Unique identifier: CRD42022367450.
Asunto(s)
Infecciones por VIH , Accidente Cerebrovascular , Humanos , Años de Vida Ajustados por Calidad de Vida , Accidente Cerebrovascular/epidemiología , Infecciones por VIH/complicaciones , Infecciones por VIH/epidemiología , Salud Global , Proyectos de Investigación , Carga Global de Enfermedades , Factores de RiesgoRESUMEN
Cell division cycle 123 (CDC123) has been implicated in a variety of human diseases. However, it remains unclear whether CDC123 plays a role in tumorigenesis and how its abundance is regulated. In this study, we found that CDC123 was highly expressed in breast cancer cells, and its high expression was positively correlated with a poor prognosis. Knowndown of CDC123 impaired the proliferation of breast cancer cells. Mechanistically, we identified a deubiquitinase, ubiquitin-specific peptidase 9, X-linked (USP9X), that could physically interact with and deubiquitinate K48-linked ubiquitinated CDC123 at the K308 site. Therefore, the expression of CDC123 was positively correlated with USP9X in breast cancer cells. In addition, we found that deletion of either USP9X or CDC123 led to altered expression of cell cycle-related genes and resulted in the accumulation of cells population in the G0/G1 phase, thereby suppressing cell proliferation. Treatment with the deubiquitinase inhibitor of USP9X, WP1130 (Degrasyn, a small molecule compound that USP9X deubiquitinase inhibitor), also led to the accumulation of breast cancer cells in the G0/G1 phase, but this effect could be rescued by overexpression of CDC123. Furthermore, our study revealed that the USP9X/CDC123 axis promotes the occurrence and development of breast cancer through regulating the cell cycle, and suggests that it may be a potential target for breast cancer intervention. In conclusion, our study demonstrates that USP9X is a key regulator of CDC123, providing a novel pathway for the maintenance of CDC123 abundance in cells, and supports USP9X/CDC123 as a potential target for breast cancer intervention through regulating the cell cycle.
Asunto(s)
Neoplasias de la Mama , Transformación Celular Neoplásica , Femenino , Humanos , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Carcinogénesis/genética , Carcinogénesis/metabolismo , Ciclo Celular , Línea Celular Tumoral , Enzimas Desubicuitinizantes , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismoRESUMEN
BACKGROUND: To date, data on the efficacy of targeted therapies for mucosal melanoma (MM) are limited. In this study, we analyzed genetic alterations according to the primary site of origin, which could provide clues for targeted therapy for MM. METHODS: We conducted a retrospective cohort study of 112 patients with MM. Targeted sequencing was performed to analyze genetic aberrations. Kaplan-Meier analysis was conducted with the log-rank test to compare the significance among subgroups. RESULTS: In total, 112 patients with MM were included according to the anatomic sites: 38 (33.9%) in the head and neck, 22 (19.6%) in the genitourinary tract, 21 (18.8%) in the anorectum, 19 (17.0%) in the esophagus, 10 (8.9%) in the uvea, and 2 (1.8%) in the small bowel. The most significantly mutated genes included BRAF (17%), KIT (15%), RAS (15%), TP53 (13%), NF1 (12%), SF3B1 (11%), GNA11 (7%), GNAQ (5%), and FBXW7 (4%). A large number of chromosomal structural variants was found. The anatomic sites of esophagus and small bowel were independent risk factors for progression-free survival (PFS, hazard ratio [HR] 4.78, 95% confidence interval [CI] 2.42-9.45, P < 0.0001) and overall survival (OS, HR 5.26, 95% CI 2.51-11.03, P < 0.0001). Casitas B-lineage lymphoma (CBL) mutants showed significantly poorer PFS and OS. In contrast, MM patients who received immune checkpoint inhibitors (ICIs) had a significantly more favorable OS (HR 0.39, 95% CI 0.20-0.75, P = 0.008). CONCLUSIONS: Our findings reveal the genetic features of patients with MM, mainly across six anatomic sites, offering a potential avenue for targeted therapies.
RESUMEN
The purpose of this study was to investigate the correlation of thyroid-related hormones changes within the reference range with the changes in anthropometric measures and incidence of obesity. The study included 4850 subjects with normal thyroid-related hormones at baseline and at follow-up. We evaluated the relationship of changes in thyroid-related biomarkers with anthropometric measures changes and incidence of obesity. In euthyroid persons, changes in serum thyroid stimulating hormone (TSH), free triiodothyronine (FT3), and free thyroxine (FT4) concentrations and FT3/FT4 ratio were independent predictors of changes in body mass index (BMI) and waist circumference (WC) in men, changes in serum FT3 and FT4 concentrations and FT3/FT4 ratio were independent predictors of changes in BMI and WC in women. Every single unit increment in ΔFT3/FT4 was accompanied by a 7.144 and 7.572 times risk of having obesity in men and women, respectively. Every single unit decrement in ΔFT4 was accompanied by a 21.0% and 26.9% lower risk of having obesity in men and women, respectively. In conclusion, in euthyroid individuals, changes in thyroid-related hormones were associated with anthropometric measures changes and incidence of obesity.
RESUMEN
OBJECTIVE: Assess developmental pattern of Sylvian fissures (SF) with Three-Dimensional Crystal Vue Imaging (3D-CVI) at 20-32+6 weeks of gestation. METHODS: This was a prospective cross-sectional study. Assess 20-32+6 weeks' gestation normal development of fetal brain SF with 3D-CVI imaging. Measure the uncovered area and perimeter of the insula on the Three-Dimensional (3D) image and establish reference ranges for the uncovered area and perimeters of the insula during normal pregnancy 20-32+6 weeks' gestation. Examine intra- and interobserver repeatability of measurements of the uncovered area and perimeter of the insula. RESULTS: A total of 286 normal fetuses from 20 to 32+6 weeks of gestation were studied. The SF first was trapezoidal in the 25 weeks of gestation, gradually becoming triangular as gestational age (GA) increased, and then closing from posterior up to anterior down. The uncovered area and dimension of the insula showed a parabolic curve that first increased and then decreased as GA and head circumference (HC) increased. Reference ranges for measurements of the uncovered area and perimeters of the insula during normal pregnancy 20-32+6 weeks' gestation were established. The intra- and interobserver agreements were reproducible (all ICC > 0.850); there were more than 95% dots in the Bland-Altman plots (95 limits of agreement (LOA)) scale in every figure. CONCLUSIONS: 3D-CVI can be used to observe the morphological changes of SF during middle and late pregnancy, which is an intuitive supplementary means for prenatal evaluation of cerebral cortex development, guiding subsequent follow-up and referral for assessment by expert neurosonologists. KEY POINTS: ⢠A new imaging technique was found to visualize the SF of fetal brain surface. ⢠This technique has the advantages of good consistency and repeatability, simple operation, short time-consuming, and low cost. ⢠Its 3D visualization images can be used to the development and changes of the sulci on the brain surface, it provides a new method to evaluate the development of cerebral cortex.
Asunto(s)
Imagenología Tridimensional , Evaluación de la Tecnología Biomédica , Femenino , Embarazo , Humanos , Edad Gestacional , Estudios Transversales , Estudios Prospectivos , Ultrasonografía Prenatal/métodos , Corteza Cerebral/diagnóstico por imagen , Valores de ReferenciaRESUMEN
Salmonella is one of the most important foodborne pathogens. In this article, a total of 160 Salmonella isolates recovered from retail meats in June-July 2018 (before COVID-19 outbreak) and December 2020-April 2021 (after COVID-19 outbreak) in Nanchang, China, were characterized for serotyping, antimicrobial susceptibility, and specific resistance gene screening. The prevalence of Salmonella Typhimurium increased from 5.4% in 2018 to 19.1% in 2021, and Salmonella Enteritidis increased from 3.3% in 2018 to 8.8% in 2021. Compared with those in June-July 2018, Salmonella isolates in December 2020-April 2021 demonstrated a significant increase in resistance to 13 tested antibiotics except for doxycycline and nitrofurantoin (p < 0.05). The Salmonella isolates in December 2020-April 2021 showed a higher presence of plasmid-mediated quinolone resistance genes (qnrA, qnrB, and qnrS), and mutations in the quinolone resistance-determining region (gyrA Asp87Asn, gyrA Asp87Tyr, parC Thr57Ser, and parC Ser80Ile). Whole-genome sequencing was used to analyze four polymyxin B-resistant strains. Some common mutation sites in eptC and micA were found in the four strains. Based on the data in this article, it indicated that antibiotic resistance was facilitated and more gene mutations related to quinolone resistance were developed.
Asunto(s)
COVID-19 , Quinolonas , Humanos , Farmacorresistencia Bacteriana/genética , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Salmonella typhimurium , Carne , China/epidemiologíaRESUMEN
Triple-negative breast cancer (TNBC) is the most fatal subtype of breast cancer; however, effective treatment strategies for TNBC are lacking. Therefore, it is important to explore the mechanism of TNBC metastasis and identify its therapeutic targets. Dysregulation of ETHE1 leads to ethylmalonic encephalopathy in humans; however, the role of ETHE1 in TNBC remains elusive. Stable cell lines with ETHE1 overexpression or knockdown were constructed to explore the biological functions of ETHE1 during TNBC progression in vitro and in vivo. Mass spectrometry was used to analyze the molecular mechanism through which ETHE1 functions in TNBC progression. ETHE1 had no impact on TNBC cell proliferation and xenograft tumor growth but promoted TNBC cell migration and invasion in vitro and lung metastasis in vivo. The effect of ETHE1 on TNBC cell migratory potential was independent of its enzymatic activity. Mechanistic investigations revealed that ETHE1 interacted with eIF2α and enhanced its phosphorylation by promoting the interaction between eIF2α and GCN2. Phosphorylated eIF2α in turn upregulated the expression of ATF4, a transcriptional activator of genes involved in cell migration and tumor metastasis. Notably, inhibition of eIF2α phosphorylation through ISRIB or ATF4 knockdown partially abolished the tumor-promoting effect of ETHE1 overexpression. ETHE1 has a functional and mechanistic role in TNBC metastasis and offers a new therapeutic strategy for targeting ETHE1-propelled TNBC using ISRIB.
Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/patología , Factor 2 Eucariótico de Iniciación/metabolismo , Línea Celular Tumoral , Transducción de Señal , Proliferación Celular/genética , Movimiento Celular/genética , Regulación Neoplásica de la Expresión Génica , Proteínas Mitocondriales/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismoRESUMEN
Fusobacterium nucleatum infection plays vital roles in colorectal cancer (CRC) progression. Overexpression of microRNA-4717-3p (miR-4717) was reported to be upregulated in F. nucleatum positive CRC tissues, however, the underlying mechanism is unknown. In this study, we found that miR-4717 promoted CRC cell proliferation in vitro and growth of CRC in vivo following F. nucleatum infection. MicroRNA-4717 suppressed the expression of mitogen-activated protein kinase kinase 4 (MAP2K4), a tumor suppressor, by directly targeting its 3'-UTR. Furthermore, we confirmed that methyltransferase-like 3 (METTL3)-dependent m6 A methylation could methylate primary (pri)-miR-4717, which further promoted the maturation of pri-miR-4717, and METTL3 positively regulated CRC cell proliferation through miR-4717/MAP2K4 pathways. In conclusion, F. nucleatum-induced miR-4717 excessive maturation through METTL3-dependent m6 A modification promotes CRC cell proliferation, which provides a potential therapeutic target and diagnostic biomarker for CRC.
Asunto(s)
Neoplasias Colorrectales , MicroARNs , Humanos , Fusobacterium nucleatum/genética , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias Colorrectales/patología , Proliferación Celular/genética , Regiones no Traducidas 3' , Metiltransferasas/genéticaRESUMEN
Genome-wide accurate identification and quantification of full-length mRNA isoforms is crucial for investigating transcriptional and posttranscriptional regulatory mechanisms of biological phenomena. Despite continuing efforts in developing effective computational tools to identify or assemble full-length mRNA isoforms from second-generation RNA-seq data, it remains a challenge to accurately identify mRNA isoforms from short sequence reads owing to the substantial information loss in RNA-seq experiments. Here, we introduce a novel statistical method, annotation-assisted isoform discovery (AIDE), the first approach that directly controls false isoform discoveries by implementing the testing-based model selection principle. Solving the isoform discovery problem in a stepwise and conservative manner, AIDE prioritizes the annotated isoforms and precisely identifies novel isoforms whose addition significantly improves the explanation of observed RNA-seq reads. We evaluate the performance of AIDE based on multiple simulated and real RNA-seq data sets followed by PCR-Sanger sequencing validation. Our results show that AIDE effectively leverages the annotation information to compensate the information loss owing to short read lengths. AIDE achieves the highest precision in isoform discovery and the lowest error rates in isoform abundance estimation, compared with three state-of-the-art methods Cufflinks, SLIDE, and StringTie. As a robust bioinformatics tool for transcriptome analysis, AIDE enables researchers to discover novel transcripts with high confidence.
Asunto(s)
Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Anotación de Secuencia Molecular , Isoformas de ARN , ARN Mensajero , Análisis de Secuencia de ARN , Humanos , Isoformas de ARN/biosíntesis , Isoformas de ARN/genética , ARN Mensajero/biosíntesis , ARN Mensajero/genéticaRESUMEN
In mammals, dormant primordial follicles represent the ovarian reserve throughout reproductive life. In vitro activation of dormant primordial follicles has been used to treat patients with premature ovarian insufficiency (POI). However, there remains a lack of effective strategies to stimulate follicle activation in vivo. In this study, we used an in vitro ovarian culture system and intraperitoneal injection to study the effect of lithium treatment on primordial follicle activation. Lithium increased the number of growing follicles in cultured mouse ovaries and promoted pre-granulosa cell proliferation. Furthermore, lithium significantly increased the levels of phosphorylated protein kinase B (Akt) and the number of oocytes with forkhead Box O3a (FOXO3a) nuclear export. Inhibition of the phosphatidylinositol 3 kinase (PI3K)/Akt pathway by LY294002 reversed lithium-promoted mouse primordial follicle activation. These results suggest that lithium promotes mouse primordial follicle activation by the PI3K/Akt signaling. Lithium also promoted primordial follicle activation and increased the levels of p-Akt in mouse ovaries in vivo and in human ovarian tissue cultured in vitro. Taken together, lithium promotes primordial follicle activation in mice and humans by the PI3K/Akt signaling. Lithium might be a potential oral drug for treating infertility in POI patients with residual dormant primordial follicles.
Asunto(s)
Insuficiencia Ovárica Primaria , Proteínas Proto-Oncogénicas c-akt , Animales , Femenino , Humanos , Litio/metabolismo , Litio/farmacología , Compuestos de Litio/metabolismo , Compuestos de Litio/farmacología , Mamíferos/metabolismo , Ratones , Oocitos/metabolismo , Folículo Ovárico/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismoRESUMEN
Influenza A virus is an important human pathogen causing significant morbidity and mortality. Numerous host factors and cellular responses are dysregulated during influenza A virus infection. This includes arrest of autophagic flux dependent on the influenza M2 ion channel, but little is known which host factors participate in this autophagic dysfunction. Sarco/endoplasmic reticulum calcium ATPase (SERCA) is known to regulate transport of calcium ions between the cytoplasm and the sarco/endoplasmic reticulum, and has been positively correlated with autophagic flux. Herein, we found that SERCA activity was suppressed in influenza A virus infected human lung cells (H1395) and that CDN1163, an activator of SERCA, restored autophagic flux and thus reduced autophagosome accumulation caused by the influenza A virus. Activating SERCA activity with CDN1163 also decreased expression of inflammatory cytokines and chemokines and attenuated mitochondrial dysfunction in IAV-infected H1395 cells. Conversely, SERCA inhibition or genetic ablation aggravated the autophagy dysfunction, mitochondria, and inflammatory responses in the cells infected with influenza A virus. Further study showed that SERCA might regulate the inflammatory response by modulating phosphorylation of MAPK-JNK pathway. These findings showed that the influenza A virus induced autophagic flux blocking, inflammatory response and mitochondrial dysfunction by inhibiting SERCA activity. This study provides further understanding of the host-viral interactions between the influenza virus, SERCA activity, autophagy, inflammatory response, and mitochondrial function. SERCA may be a potential host target for decreasing inflammatory and superoxide injury during influenza A virus infection.IMPORTANCE:IAV is a major cause of infectious respiratory diseases, characterized by a marked respiratory tract inflammatory response that causes morbidity and mortality in seasonal epidemics, or pandemic outbreaks. SERCA is a critical component in maintaining cellular calcium levels, and is positively correlated with autophagic flux. Here, we discovered that SERCA is suppressed in IAV-infected human lung cells and influenza A virus induces blocking of autophagic flux, inflammatory response and mitochondrial dysfunction by inhibiting SERCA. We posit that the pharmacological activation of SERCA can be a powerful intervention strategy to prevent autophagy arrest, inflammatory response, and mitochondrial dysfunction in IAV-infected cells. Therefore, SERCA activity modulation could be a potential therapeutic strategy for managing clinical symptoms of severe influenza disease.
RESUMEN
The aim of this study was to investigate the role and underlying mechanism of the long non-coding RNA ANRIL (antisense noncoding RNA in the INK4 locus, ANRIL) in ischemia stroke (IS) injury. Downregulation of ANRIL by right intracerebroventricular injected si-ANRIL in middle cerebral artery occlusion-reperfusion (MCAO/R) C57/BL6 mice and by transferring si-ANRIL in oxygen glucose deprivation/reperfusion (OGD/R) HT22 cells. The results showed that ANRIL levels increased in IS model, downregulation of ANRIL reduced infract area, neurological deficit scores and injured cells, and prolong fall latency time in MCAO/R mice, improved cell viability and reduced cell cytotoxicity in OGD/R cells. Fluorescence in Situ Hybridization detected that there were both ANRIL and miR-671-5p in neurons; miranda v3.3a and dual luciferase reporter assay demonstrated that miR-671-5p was one of direct target of ANRIL; and our previously published research demonstrated that NF-κB was one of direct target of miR-671-5p. Downregulation of ANRIL alleviated neuroinflammation and reduced p-NF-κB, NF-κB, pro-inflammatory cytokines (IL-1ß, IL-6, TNF-a), and iNOS, which diminished by miR-671-5p antagomir both in in vivo and in vitro IS models. Downregulation of ANRIL alleviated disruption of blood brain barrier, and protected against tight junction (ZO-1, occludin and claudin 5) disorder in MCAO/R mice. This work clarified that downregulation of ANRIL reduced neuroinflammation by negatively regulating miR-671-5p to inhibit NF-κB in IS models, which provided a theoretical foundation for the protective effect of downregulating ANRIL for IS patients.
Asunto(s)
Accidente Cerebrovascular Isquémico , MicroARNs , ARN Largo no Codificante , Animales , Apoptosis/genética , Regulación hacia Abajo , Humanos , Hibridación Fluorescente in Situ , Infarto de la Arteria Cerebral Media , Ratones , MicroARNs/genética , MicroARNs/metabolismo , FN-kappa B/metabolismo , Enfermedades Neuroinflamatorias , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismoRESUMEN
An efficient copper-catalyzed aerobic oxidative cross-dehydrogenative coupling reaction for the synthesis of multisubstituted phosphorylhydrazides from N,N-disubstituted hydrazines and hydrogen phosphoryl compounds is accomplished. The reaction proceeds under mild conditions without the addition of any external oxidants and bases. This work reported here represents a direct P(âO)-N-N bond formation with the advantages of being operationally simple, good functional group tolerance, and high atom and step economy. Furthermore, the selected compounds exhibit potential inhibitory activity against tumor cells, which can be used in the field of screening of anticancer agents as new chemical entities.
Asunto(s)
Antineoplásicos , Hidrazinas , Antineoplásicos/farmacología , Catálisis , Cobre/química , Hidrazinas/química , Hidrazinas/farmacología , FosforilaciónRESUMEN
Gliomas are one of the most prevalent brain tumors. This study sought to elucidate the mechanism of CUX2 in glioma development via ADCY1. CUX2 and ADCY1 expression in glioma predicted by bioinformatics analysis. Subsequent to gain- and loss-of-function experiments in glioma cells, cell proliferation was tested by CCK8 and plate clone formation assays, and cell migration and invasion by Transwell assay. The binding between CUX2 and ADCY1 was examined with dual-luciferase gene reporter and ChIP assays. The xenograft mouse model was established to verify the effect of the CUX2/ADCY1 axis on glioma cell growth in vivo. CUX2 and ADCY1 expression was low in glioma. The overexpression of CUX2 repressed the proliferative, migrating, and invasive abilities of glioma cells. Moreover, CUX2 was enriched in the ADCY1 promoter to enhance ADCY1 expression. ADCY1 upregulation diminished glioma cell proliferative, migrating, and invasive properties. Silencing of ADCY1 abrogated and upregulation of ADCY1 promoted the inhibitory influence of CUX2 upregulation on the malignant behaviors of glioma cells in vitro and gliomas cell growth in vivo. Collectively, CUX2 promoted ADCY1 transcription to delay glioma cell migration, proliferation, and invasion.