Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Nanobiotechnology ; 22(1): 522, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39215337

RESUMEN

Titanium alloys represent the prevailing material employed in orthopedic implants, which are present in millions of patients worldwide. The prolonged presence of these implants in the human body has raised concerns about possible health effects. This study presents a comprehensive analysis of titanium implants and surrounding tissue samples obtained from patients who underwent revision surgery for therapeutic reasons. The surface of the implants exhibited nano-scale corrosion defects, and nanoparticles were deposited in adjacent samples. In addition, muscle in close proximity to the implant showed clear evidence of fibrotic proliferation, with titanium content in the muscle tissue increasing the closer it was to the implant. Transcriptomics analysis revealed SNAI2 upregulation and activation of PI3K/AKT signaling. In vivo rodent and zebrafish models validated that titanium implant or nanoparticles exposure provoked collagen deposition and disorganized muscle structure. Snai2 knockdown significantly reduced implant-associated fibrosis in both rodent and zebrafish models. Cellular experiments demonstrated that titanium dioxide nanoparticles (TiO2 NPs) induced fibrotic gene expression at sub-cytotoxic doses, whereas Snai2 knockdown significantly reduced TiO2 NPs-induced fibrotic gene expression. The in vivo and in vitro experiments collectively demonstrated that Snai2 plays a pivotal role in mediating titanium-induced fibrosis. Overall, these findings indicate a significant release of titanium nanoparticles from the implants into the surrounding tissues, resulting in muscular fibrosis, partially through Snai2-dependent signaling.


Asunto(s)
Fibrosis , Factores de Transcripción de la Familia Snail , Titanio , Pez Cebra , Titanio/química , Animales , Factores de Transcripción de la Familia Snail/metabolismo , Factores de Transcripción de la Familia Snail/genética , Humanos , Prótesis e Implantes , Masculino , Transducción de Señal/efectos de los fármacos , Nanopartículas del Metal/química , Músculo Esquelético/metabolismo , Músculo Esquelético/efectos de los fármacos , Ratas , Ratones
2.
Ecotoxicol Environ Saf ; 278: 116395, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38728939

RESUMEN

Escherichia coli (E. coli) plays an important ecological role, and is a useful bioindicator to recognize the evolution of resistance in human, animal and environment. Recently, extended-spectrum ß-lactamases (ESBL) producing E.coli has posed a threat to public health. Generally, captive healthy giant pandas are not exposed to antibiotics; however, they still acquire antimicrobial resistant bacteria. In order to understand whether there is an exchange of resistance genes within the ecosystems of captive giant pandas, this study explored resistance characteristics of 330 commensal E. coli isolates from feces of giant pandas, the surroundings, and breeders. Isolates from different sources showed similar resistance phenotype, and ESBL/AmpC-producing isolates showed more profound resistance to antibiotics than non-ESBL/AmpC-producing isolates (P<0.05). Furthermore, the occurrence of broad-spectrum ß-lactamase related resistance genes and colistin resistance genes was detected, and isolates phylogenetic typing and multilocus sequence typing (MLST) were applied in this study. Seven different ß-lactamase resistance genes (blaCTX-M-55, blaCTX-M-15, blaCTX-M-27, blaCTX-M-65, blaTEM-1, blaOXA-1 and blaCMY) and mcr-1 were found in 68 ESBL/AmpC-producing isolates. blaCTX-M-55 (48.53 %) was found the most predominant resistance genes, followed by blaTEM-1 (19.12 %) and blaCTX-M-27 (16.18 %). Nonetheless, blaCTX-M-55 was commonly detected in the isolates from giant pandas (63.16 %), the surroundings (43.48 %), and breeders (33.33 %). However, there were no carbapenemase genes detected in this study. mcr-1 was harbored in only one isolate from giant panda. Forty-five tansconjugants were successfully obtained in the conjugation experiments. The presence of antimicrobial resistance and related resistance genes tested were observed in the transconjugants. The results indicated that 52.63 % of the isolates from giant panda 73.91 % of the isolates from surroundings, and 100 % of the isolates from breeders were phylogroup A. Total of 27 sequence types (ST) were recognized from the isolate by MLST and found that ST48 (19/68; 27.94 %) was the predominant ST type, especially in the isolates from giant pandas and the surroundings. In conclusion, commensal ESBL/AmpC-producing E. coli becomes a reservoir of ESBL resistance genes, which is a potential threaten to health of giant pandas. The interaction between giant pandas, surroundings and breeders contribute to development of resistant phenotypes and genotypes which might transfer across species or the surroundings easily; hence, strict monitoring based on a "One Health" approach is recommended.


Asunto(s)
Antibacterianos , Proteínas Bacterianas , Escherichia coli , Heces , Tipificación de Secuencias Multilocus , Ursidae , beta-Lactamasas , Animales , Escherichia coli/genética , Escherichia coli/efectos de los fármacos , beta-Lactamasas/genética , Ursidae/microbiología , China , Antibacterianos/farmacología , Heces/microbiología , Proteínas Bacterianas/genética , Ecosistema , Filogenia , Pruebas de Sensibilidad Microbiana , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/veterinaria , Farmacorresistencia Bacteriana Múltiple/genética , Farmacorresistencia Bacteriana/genética
3.
Parasitol Res ; 122(2): 493-496, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36471090

RESUMEN

Toxoplasmosis, caused by Toxoplasma gondii, is a worldwide zoonosis. The aim of the present study was to detect the seroprevalence of T. gondii infection and associated risk factors among Siberian tigers (Panthera tigris altaica) and giant pandas (Ailuropoda melanoleuca) in China. Blood samples from 112 Siberian tigers and 22 giant pandas were tested for immunoglobulin G (IgG) against T. gondii by enzyme-linked immunosorbent assay (ELISA). The seroprevalence of T. gondii infection was 7.14% among Siberian tigers and 9.09% among giant pandas. No risk factors were found to be significantly associated with seroprevalence (P > 0.05). This is the first study to evaluate T. gondii infection in Siberian tigers on a large scale in China, and it also updates the information regarding the positivity rate of T. gondii infection among giant pandas in China.


Asunto(s)
Tigres , Toxoplasma , Toxoplasmosis , Ursidae , Animales , Humanos , Estudios Seroepidemiológicos , China/epidemiología , Anticuerpos Antiprotozoarios
4.
J Vet Pharmacol Ther ; 44(4): 644-649, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33565110

RESUMEN

The pharmacokinetics of levofloxacin mesylate in healthy adult giant panda is unknown. In this study, the pharmacokinetics of levofloxacin after intramuscular administration at a dose of 2 mg/kg and oral administration at a dose of 3 mg/kg in healthy adult giant pandas was determined. Levofloxacin concentrations in plasma were determined using liquid chromatography. In the levofloxacin intramuscular administration group, the absorption and elimination half-lives of the drug were determined to be 0.123 (range: 0.02) hr and 5.402 (range: 0.70) hr, respectively. In the levofloxacin oral administration group, the absorption and elimination half-lives were determined to be 0.325 (range: 0.02) hr and 7.143 (range: 0.63) hr, respectively. Furthermore, the blood-drug concentration of levofloxacin was found to be above 1 µg/ml after 8 hr of intramuscular administration and above 0.5 µg/ml after 12 hr of oral administration. In this study, HPLC conditions and pretreatment methods of plasma samples were optimized and a detection method was established. Our results indicated that in healthy adult giant pandas, levofloxacin was rapidly absorbed and slowly eliminated. This study will therefore provide to be a guide in veterinary research and will be helpful in the rational use of levofloxacin in giant panda.


Asunto(s)
Levofloxacino , Ursidae , Administración Oral , Animales , Antibacterianos , Mesilatos
5.
Yi Chuan ; 43(9): 849-857, 2021 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-34702698

RESUMEN

MicroRNAs (miRNAs), a family of endogenous non-coding RNAs with a length of about 22 nucleotides, are widely found in eukaryotes. miRNAs can affect gene expression through specific bindings with mRNAs of target genes and participate in the regulation of a variety of biological processes. Giant panda is not only a unique rare animal in China, but also the focus of attention on wildlife preservation worldwide. In recent years, with the popularization of next-generation sequencing (NGS) technology, miRNAs in giant panda have been discovered and identified one after another. In this review, we focus on the research progress on miRNAs in giant panda, involved in immune response, mammary gland development, sperm freezing tolerance and other biological processes, and then discuss future research directions of miRNAs in giant panda, and thus providing the scientific references and new ideas for studying the regulatory mechanisms of miRNAs and promoting the breeding and protection of giant panda.


Asunto(s)
MicroARNs , Ursidae , Animales , China , Masculino , MicroARNs/genética , ARN Mensajero , Espermatozoides , Ursidae/genética
6.
Microb Pathog ; 115: 280-286, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29294370

RESUMEN

A recent study has described the normal vaginal bacterial community in giant pandas, but there is a lack of knowledge of the fungal community residing in the vagina of giant pandas. In order to comprehensively understand the vaginal fungal microbial diversity and abundance in giant pandas, high throughput sequencing was used to analyse the ITS1 region, based on thirteen samples taken from the pandas' vaginas, which were grouped by sampling points and age. The results showed that the most abundant phyla were Basidiomycota (73.37%), followed by Ascomycota (20.04%), Zygomycota (5.23%), Glomeromycota (0.014%) and Chytridiomycota (0.006%). At the genus level, Guehomyces (37.92%) was the most abundant, followed by Cladosporium (9.072%), Trichosporon (6.2%) and Mucor (4.97%). Furthermore, Candida only accounted for a low percentage of the vaginal fungal community. With the saturation of rarefaction curves and fungal diversity indices, the samples from Dujiangyan and Chungking Safari Park (DC group) showed a higher fungal species richness and diversity than other living environments. Shannon diversity indices showed significant difference between group WL (Wolong nature reserve) and DC (P < .05). Additionally, a higher diversity was found in ten to fifteen years old (Group 2) than other groups. Group 2 and Group 3 displayed significant differences in the diversities of their vaginal fungal communities (P < .05). These data that has been collected from this research will be helpful for further study to improve the reproductive status of giant pandas.


Asunto(s)
Hongos/clasificación , Hongos/genética , Micobioma/genética , Vagina/microbiología , Envejecimiento , Animales , Biodiversidad , ADN Intergénico/genética , Femenino , Hongos/aislamiento & purificación , Secuenciación de Nucleótidos de Alto Rendimiento , Ursidae
7.
BMC Vet Res ; 14(1): 311, 2018 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-30314476

RESUMEN

BACKGROUND: Ovarian cancer is diagnosed clinically by detecting ovarian cancer-related factors and markers. Here, we report a case of giant panda ovarian tumor metastasis with a combination of clinical and histopathological diagnosis. CASE PRESENTATION: Histopathological studies revealed severe lesions and tumor cells in the ovaries, lungs, spleen, kidneys and perianal tissue. Immunohistochemistry staining showed that the ovarian cancer markers B7-H4, CA125, and HE4 were highly expressed in the lungs, kidneys, spleen, ovaries and perianal tissue. Tumor marker tests detected significantly high levels of AFP in serum. CONCLUSION: Clinical biomarkers combined with histopathology can provide a more accurate diagnosis of ovarian cancer metastasis and identification of ovarian cancer types than either method alone. The giant panda's death may be due to granulosa cell tumor and theca cell tumor metastasis causing multiple organ dysfunction or even failure.


Asunto(s)
Neoplasias Ováricas/diagnóstico , Neoplasias Ováricas/patología , Ursidae , Animales , Biomarcadores de Tumor/análisis , Femenino , Inmunohistoquímica , Metástasis de la Neoplasia
8.
Phytomedicine ; 124: 155284, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38176267

RESUMEN

BACKGROUND: Osteoporosis is a systemic skeletal disorder characterized by decreased bone density and the degradation of bone tissue microarchitecture. Ginsenoside Rg1, derived from Panax ginseng, has been a part of traditional Chinese medicine in China for centuries, particularly for treating osteoporosis. However, there remains limited research on the osteogenic potential of Rg1 within the glucocorticoid-induced osteoporosis (GIOP) model and its specific mechanisms. PURPOSE: The primary objective of this study is to investigate the osteogenic potential of Rg1 within the GIOP model and explore the signaling pathways associated with its in vivo and in vitro effects. METHODS: Cell proliferation, differentiation and mineralization were evaluated by the Cell counting kit 8(CCK8) assay, alkaline phosphatase (ALP) test and Alizarin Red S staining, respectively. The qPCR technique was used to determine the relative expression of mRNA and the western blot was used to determine the relative expression of protein. In vivo experiments, spinal vertebrae staining in zebrafish larvae was accomplished by alizarin red S staining. RESULTS: Zebrafish larvae's hatching, survival, malformation, and heart rate were unaffected by 50 µM of Rg1 in vivo, while the MEC3T3-E1 cell line's proliferation was unaffected by 50 µM of Rg1 in vitro. Meanwhile, Rg1 was shown to improve osteogenic differentiation or bone formation as well as the level of mRNA expression of osteogenic markers in vivo and in vitro. Treatment with Rg1 significantly increased the expression of G protein-coupled estrogen receptor (GPER) and pAKT. In addition, the GPER inhibitor G15 could significantly reduce the mRNA and protein expression levels of GPER and phosphorylated AKT, LY294002, a PI3K/AKT pathway inhibitor, markedly suppresses the expression of phosphorylated AKT, yet shows no significant impact on GPER expression. Both G15 and LY294002 can significantly blocked the Rg1-mediated enhancement of osteogenesis capacity in the GIOP model. In contrast, when both the agonists G1 of GPER and LY294002 were added, G1 increased the relative expression of mRNA and protein of GPER, but not the expression of osteogenic capacity and osteogenic markers. CONCLUSIONS: This study investigates the mineralization effects and mechanisms of Ginsenoside Rg1 both in vitro and in vivo. For the first time, we propose that Rg1 might regulate osteogenesis by modulating AKT phosphorylation through mediating GPER expression within the PI3K/AKT pathway in the GIOP model. This discovery introduces novel targets and avenues for osteoporosis treatment.


Asunto(s)
Antraquinonas , Ginsenósidos , Osteogénesis , Osteoporosis , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Pez Cebra/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Diferenciación Celular , Estrógenos/farmacología , Glucocorticoides , ARN Mensajero
9.
Antioxidants (Basel) ; 13(4)2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38671878

RESUMEN

Iron overload-associated osteoporosis presents a significant challenge to bone health. This study examines the effects of arecoline (ACL), an alkaloid found in areca nut, on bone metabolism under iron overload conditions induced by ferric ammonium citrate (FAC) treatment. The results indicate that ACL mitigates the FAC-induced inhibition of osteogenesis in zebrafish larvae, as demonstrated by increased skeletal mineralization and upregulation of osteogenic genes. ACL attenuates FAC-mediated suppression of osteoblast differentiation and mineralization in MC3T3-E1 cells. RNA sequencing analysis suggests that the protective effects of ACL are related to the regulation of ferroptosis. We demonstrate that ACL inhibits ferroptosis, including oxidative stress, lipid peroxidation, mitochondrial damage, and cell death under FAC exposure. In this study, we have identified heme oxygenase-1 (HO-1) as a critical mediator of ACL inhibiting ferroptosis and promoting osteogenesis, which was validated by HO-1 knockdown and knockout experiments. The study links ACL to HO-1 activation and ferroptosis regulation in the context of bone metabolism. These findings provide new insights into the mechanisms underlying the modulation of osteogenesis by ACL. Targeting the HO-1/ferroptosis axis is a promising therapeutic approach for treating iron overload-induced bone diseases.

10.
Toxics ; 12(2)2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38393225

RESUMEN

Cobalt alloys have numerous applications, especially as critical components in orthopedic biomedical implants. However, recent investigations have revealed potential hazards associated with the release of nanoparticles from cobalt-based implants during implantation. This can lead to their accumulation and migration within the body, resulting in adverse reactions such as organ toxicity. Despite being a primary interface for cobalt nanoparticle (CoNP) exposure, skeletal muscle lacks comprehensive long-term impact studies. This study evaluated whether selenium nanoparticles (SeNPs) could mitigate CoNP toxicity in muscle cells and zebrafish models. CoNPs dose-dependently reduced C2C12 viability while elevating reactive oxygen species (ROS) and apoptosis. However, low-dose SeNPs attenuated these adverse effects. CoNPs downregulated myogenic genes and α-smooth muscle actin (α-SMA) expression in C2C12 cells; this effect was attenuated by SeNP cotreatment. Zebrafish studies confirmed CoNP toxicity, as it decreased locomotor performance while inducing muscle injury, ROS generation, malformations, and mortality. However, SeNPs alleviated these detrimental effects. Overall, SeNPs mitigated CoNP-mediated cytotoxicity in muscle cells and tissue through antioxidative and antiapoptotic mechanisms. This suggests that SeNP-coated implants could be developed to eliminate cobalt nanoparticle toxicity and enhance the safety of metallic implants.

11.
Adv Mater ; : e2405943, 2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39155588

RESUMEN

Osteoarthritis (OA) is a degenerative bone and joint disease characterized by decreased cartilage lubrication, leading to continuous wear and ultimately irreversible damage. This situation is particularly challenging for early-stage OA, as current bio-lubricants lack precise targeting for small inflammatory lesions. In this work, an antibody-mediated targeting hydrogel microspheres (HMS) is developed to precisely lubricate the local injury site of cartilage and prevent the progression of early OA. Anti-Collagen type I (Anti-Col1) is an antibody that targets cartilage injury sites in early OA stages. It is anchored on a HMS matrix made of Gelatin methacrylate (GelMA) and poly (sulfobetaine methacrylate) (PSBMA) to create targeted HMS (T-G/S HMS). The T-G/S HMS's high hydrophilicity, along with the dynamic interaction between its surficial Anti-Col1 and the Col1 on cartilage injury site, ensures its precise and effective lubrication of early OA lesions. Consequently, injecting T-G/S HMS into rats with early OA significantly slows disease progression and reduces symptoms. In conclusion, the developed injectable targeted lubricating HMS and the precisely targeted lubrication strategy represent a promising, convenient technique for treating OA, particularly for slowing the early-stage OA progression.

12.
Sci Total Environ ; 951: 175711, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39181255

RESUMEN

The widespread utilization of plastic and cobalt alloy products in industries and medicine has led to the increased presence of their degradation byproducts, microplastics (MPs), and cobalt nanoparticles (Co NPs), in the environment and organisms. While these particles can circulate throughout the body via the circulatory system, their specific adverse effects and mechanisms on the vascular system remain unclear. Employing scanning electron microscope (SEM) analysis and other methodologies, we demonstrate the potential adsorption and aggregation phenomena between MPs and Co NPs. In vitro experiments illustrate that ingestion of either MPs or Co NPs compromises vascular endothelial cell function and induces the generation of reactive oxygen species (ROS). Notably, this effect is markedly attenuated when a combination of MPs and Co NPs is administered compared to MPs alone. Additionally, zebrafish experiments validate our in vitro findings. Mechanistic studies have demonstrated that both MPs and Co NPs induce aberrant Nuclear factor erythroid 2-related factor 2 (Nrf2) signaling. Intriguingly, a weaker activation level is observed when these agents are administered in combination compared to when they are administered individually. Our study provides novel insights into the interaction between MPs and Co NPs and their detrimental effects on vascular endothelial cells.


Asunto(s)
Cobalto , Nanopartículas del Metal , Microplásticos , Factor 2 Relacionado con NF-E2 , Pez Cebra , Factor 2 Relacionado con NF-E2/metabolismo , Cobalto/toxicidad , Animales , Nanopartículas del Metal/toxicidad , Microplásticos/toxicidad , Transducción de Señal/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Contaminantes Químicos del Agua/toxicidad
13.
Animals (Basel) ; 14(16)2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39199858

RESUMEN

Proper feeding and nutrition are vital for maintaining the health of giant pandas (GPs), yet the impact of dietary changes and gut microbiota on their nutrient utilization remains unclear. To address these uncertainties, we investigated nutrient intake and apparent digestibility, as well as gut microbiota composition across different age groups of giant pandas: sub-adults (SGPs), adults (AGPs), and geriatrics (GGPs). Our findings revealed notable shifts in dietary patterns from SGPs to GGPs. As they aged, significantly more bamboo shoots and less bamboo were consumed. Consequently, GGPs showed significantly reduced crude fiber (CF) intake and digestibility, while crude protein (CP) did not alter significantly. In addition, 16S rRNA microbial sequencing results showed that unidentified_Enterobacteriaceae and Streptococcus were the dominant genera among all age groups. The relative abundance of the genus Enterococcus in GGPs was significantly higher than that in SGPs and AGPs (p < 0.05). Overall, our results indicated the importance of bamboo shoots as a major source of protein in GGPs' diet, which can effectively compensate for the certain nutritional loss caused by the reduction in bamboo intake. Age-related changes in bacterial abundance have an effect on specific nutrient apparent digestibility in the gut of GPs. The data presented in this study serve as a useful reference for nutritional management in different ages of GPs under healthy conditions.

14.
J Comp Neurol ; 532(8): e25661, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39139013

RESUMEN

Vision plays a crucial role in the survival of animals, and the visual system has particularly selectively evolved in response to the visual environment, ecological niche, and species habitats in vertebrate species. To date, a horizontal streak of retinal ganglion cell (RGC) distribution pattern is observed across mammal species. Here, we report that the giant panda's vertically oriented visual streak, combined with current evidence of the animal's forward-placed eyes, ocular structure, and retinal neural topographic distribution patterns, presents the emergence of a well-adapted binocular visual system. Our results suggest that the giant panda may use a unique way to processing binocular visual information. Results of mathematical simulation are in favor of this hypothesis. The topographic distribution properties of RGCs reported here could be essential for understanding the visual adaptation and evolution of this living fossil.


Asunto(s)
Células Ganglionares de la Retina , Ursidae , Animales , Células Ganglionares de la Retina/citología , Ursidae/anatomía & histología , Ursidae/fisiología , Retina/citología , Retina/anatomía & histología
15.
Imeta ; 3(1): e171, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38868505

RESUMEN

In this study, we have successfully constructed a comprehensive database of metagenome-assembled genomes (MAGs) pertaining to the gut microbiota of the giant panda. Through our analysis, we have identified significant reservoirs of antibiotic resistance genes (ARGs), namely Escherichia coli, Citrobacter portucalensis, and Klebsiella pneumoniae. Furthermore, we have elucidated the primary contributors to ARGs, including Streptococcus alactolyticus and Clostridium SGBP116, in both captive and wild pandas. Additionally, our findings have demonstrated a higher prevalence of ARGs in the metagenome, with notable expression of the RPOB2 gene in S. alactolyticus. Crucially, 1217 ARGs shared homology with human gut ARGs, underscoring the interaction relationship between pandas and human microbiomes. These findings are instrumental in understanding the antibiotic resistance landscape in the giant panda's gut, providing a framework for developing strategies to combat antibiotic resistance and safeguard the health of this endangered species.

16.
J Vet Dent ; : 8987564241265420, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39042890

RESUMEN

Giant pandas have a high incidence of tooth wear, loss, and fracture since their diet is specifically bamboo. Dental implantation is a common treatment for tooth loss in humans while rarely reported in wild animals. To explore the applicability of dental implantation in giant pandas, this study measured mandible parameters of the giant panda, from an adult skeletal specimen. The mandible bone block model was developed using computer-aided design 3D mechanical drawing software. Implants of different radius and thread types of the third premolar tooth (PM3) were assembled and imported into an analysis software system for finite element analysis. As a result, the reverse buttress implant with a radius of 7.5 mm and 8.3 mm, and a length of 15 mm was found to be the most suitable implant for use in the giant panda PM3. This study provides a reference for appropriate clinical giant panda dental implantation, although, the feasibility of giant panda dental implantation needs to be studied further.

17.
Ann N Y Acad Sci ; 1526(1): 114-125, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37347427

RESUMEN

Mucopolysaccharidoses (MPS) are a group of rare congenital metabolic disorders caused by the deficiency or low activity of enzymes required for glycosaminoglycans degradation. Mutations in the α-l-iduronidase gene (IDUA) are associated with mucopolysaccharidosis type I (MPS I). Our study here aims to identify an MPS-related gene mutation in a typical patient with MPS and to further explore the possible pathogenic mechanism. We identified a homozygous c. 2T>C (p.M1T) change in IDUA as the pathogenic mutation in this individual (both parents were identified as carriers of the mutation), with IDUA enzyme activity significantly decreased. We further established an MPS I-related zebrafish model using IDUA-specific morpholino (MO) to suppress gene expression, and found that IDUA-MO zebrafish exhibited characteristic disease phenotypes with deficiency of IDUA. Transcriptome profiling of zebrafish larvae revealed 487 genes that were significantly altered when IDUA was depleted. TP53 signaling and LC3/GABARAP family protein-mediated autophagy were significantly upregulated in IDUA-MO zebrafish larvae. Moreover, leukotriene A4 hydrolase-mediated arachidonic acid metabolism was also upregulated. Introduction of wild-type human IDUA mRNA rescued developmental defects and aberrant signaling in IDUA-MO zebrafish larvae. In conclusion, our study provides potential therapeutic targets for the treatment of MPS I.


Asunto(s)
Mucopolisacaridosis I , Animales , Humanos , Mucopolisacaridosis I/genética , Mucopolisacaridosis I/patología , Iduronidasa/genética , Iduronidasa/metabolismo , Pez Cebra/genética , Pueblos del Este de Asia , Mutación
18.
Int J Biol Macromol ; 253(Pt 1): 126600, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37652317

RESUMEN

Glucocorticoid-induced osteoporosis (GIOP) represents the foremost cause of secondary osteoporosis and fragility fractures. Novel therapeutic strategies for GIOP are needed, with improved safety profiles and reduced costs compared to current options. Dendrobium officinale (D. officinale) is a traditional Chinese medicine that has been reported to have beneficial effects on bone metabolism. Here, we sought to investigate the impacts of D. officinale polysaccharides (DOP), the main active constituents of D. officinale, on GIOP in vivo models and dexamethasone (DEX)-treated osteoblast lineage cells. We found that low concentrations of DOP are relatively safe in vitro and in vivo, respectively. Importantly, we found that DOP treatment significantly inhibited DEX-induced osteoporosis in two in vivo models, zebrafish and mice, while boosting osteogenic differentiation of hBMSCs exposed to DEX. Futhermore, our data reveal that DOP elevates nuclear Nrf2 levels under DEX treatment, by suppressing of Nrf2 ubiquitination. Leveraging Keap1b knockout zebrafish and RNAi approach, we demonstrated that DOP disrupts the association of Nrf2/Keap1, resulting in the inhibition of Nrf2 ubiquitination. Taken together, these results illuminate that DOP stimulates osteogenesis in the presence of DEX by destabilizing the Nrf2/Keap1 interaction. These findings suggest that DOP may serve as a novel drug against osteoporosis caused by glucocorticoids.


Asunto(s)
Dendrobium , Osteoporosis , Ratones , Animales , Glucocorticoides/efectos adversos , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Pez Cebra/metabolismo , Osteogénesis , Polisacáridos/efectos adversos , Osteoporosis/inducido químicamente , Osteoporosis/tratamiento farmacológico , Osteoporosis/metabolismo , Proteínas Portadoras/farmacología , Proteínas de Pez Cebra/metabolismo
19.
Microbiome ; 11(1): 180, 2023 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-37580828

RESUMEN

BACKGROUND: The gut microbiota of the giant panda (Ailuropoda melanoleuca), a global symbol of conservation, are believed to be involved in the host's dietary switch to a fibrous bamboo diet. However, their exact roles are still largely unknown. RESULTS: In this study, we first comprehensively analyzed a large number of gut metagenomes giant pandas (n = 322), including 98 pandas sequenced in this study with deep sequencing (Illumina) and third-generation sequencing (nanopore). We reconstructed 408 metagenome-assembled genomes (MAGs), and 148 of which (36.27%) were near complete. The most abundant MAG was classified as Streptococcus alactolyticus. A pairwise comparison of the metagenomes and meta-transcriptomes in 14 feces revealed genes involved in carbohydrate metabolism were lower, but those involved in protein metabolism were greater in abundance and expression in giant pandas compared to those in herbivores and omnivores. Of note, S. alactolyticus was positively correlated to the KEGG modules of essential amino-acid biosynthesis. After being isolated from pandas and gavaged to mice, S. alactolyticus significantly increased the relative abundance of essential amino acids in mice jejunum. CONCLUSIONS: The study highlights the unique protein metabolic profiles in the giant panda's gut microbiome. The findings suggest that S. alactolyticus is an important player in the gut microbiota that contributes to the giant panda's dietary adaptation by more involvement in protein rather than carbohydrate metabolism. Video Abstract.


Asunto(s)
Microbioma Gastrointestinal , Ursidae , Animales , Ratones , Microbioma Gastrointestinal/genética , Heces/química , Metagenoma , Dieta
20.
Sci Rep ; 13(1): 6262, 2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-37069183

RESUMEN

Bamboo is the main food source of the giant panda. To increase bamboo intake in captive giant pandas, we studied factors affecting the bamboo intake. Fourteen healthy captive giant pandas in Dujiangyan Base of China Conservation and Research Center for The Giant Panda ("Dujiangyan Base" for short) were selected as research objects. A bamboo feeding experiment was conducted to study the effects of seasons, bamboo age, slope orientations where bamboo grows and felling-feeding time on bamboo intake of the giant panda. We found that the type of bamboo that captive giant pandas feed on was abundant in spring and summer, but relatively homogeneous in winter. With the increase of bamboo age, the intake of bamboo leaves decreased, while bamboo culms increased. The feed intake of 1-year-old bamboo leaves and 5-year-old bamboo culms reached the highest respectively. The slope orientation also affected the panda's bamboo intake, and the bamboo growing on sunny slopes or semi-sunny slopes was more favored by captive giant pandas. Moreover, the bamboo intake reached the highest when felling-feeding time was less than 24 h. In short, we confirmed that seasons, bamboo age, slope orientations and felling-feeding time were factors affecting bamboo intake for captive giant pandas. This study was expected to provide scientific guidance improving the feeding behavior management of captive giant pandas.


Asunto(s)
Ursidae , Animales , Conducta Alimentaria , Hojas de la Planta , Ingestión de Alimentos , Alimentos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA