Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Sensors (Basel) ; 23(3)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36772174

RESUMEN

The flexible arm easily vibrates due to its thin structural characteristics, which affect the operation accuracy, so reducing the vibration of the flexible arm is a significant issue. Smart materials are very widely used in the research topic of vibration suppression. Considering the hysteresis characteristic of the smart materials, based on previous simulation research, this paper proposes an experimental system design of nonlinear vibration control by using the interactive actuation from shape memory alloy (SMA) for a flexible arm. The experiment system was an interactive actuator-sensor-controller combination. The vibration suppression strategy was integrated with an operator-based vibration controller, a designed integral compensator and the designed n-times feedback loop. In detail, a nonlinear vibration controller based on operator theory was designed to guarantee the robust stability of the flexible arm. An integral compensator based on an estimation mechanism was designed to optimally reduce the displacement of the flexible arm. Obtaining the desired tracking performance of the flexible arm was a further step, by increasing the n-times feedback loop. From the three experimental cases, when the vibration controller was integrated with the designed integral compensator, the vibration displacement of the flexible arm was much reduced compared to that without the integral compensator. Increasing the number of n-times feedback loops improves the tracking performance. The desired vibration control performance can be satisfied when n tends to infinity. The conventional PD controller stabilizes the vibration displacement after the 7th vibration waveform, while the vibration displacement approaches zero after the 4th vibration waveform using the proposed vibration control method, which is proved to be faster and more effective in controlling the flexible arm's vibration. The experimental cases verify the effectiveness of the proposed interactive actuation vibration control approach. It is observed from the experimental results that the vibration displacement of the flexible arm becomes almost zero within less time and with lower input power, compared with a traditional controller.

2.
Sensors (Basel) ; 22(4)2022 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-35214325

RESUMEN

This paper proposes a nonlinear intelligent control of a two link robot arm by considering human voluntary components. In general, human arm viscoelastic properties are regulated in different manners according to various task requirements. The viscoelasticity consists of joint stiffness and viscosity. The research of the viscoelasticity can improve the development of industrial robots, rehabilitation and sports etc. So far, some results have been shown using filtered human arm viscoelasticity measurements. That is, human motor command is removed. As a result, the dynamics of human voluntary component during movements is omitted. In this paper, based on the feedforward characteristics of human multi joint arm, a model is obtained by considering human voluntary components using a support vector regression technique. By employing the learned model, a nonlinear intelligent control of two link robot arm is proposed. Experimental results confirm the effectiveness of this proposal.


Asunto(s)
Robótica , Humanos , Movimiento , Viscosidad
3.
Entropy (Basel) ; 23(2)2021 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-33573073

RESUMEN

This paper proposes a U-Model-Based Two-Degree-of-Freedom Internal Model Control (UTDF-IMC) structure with strength in nonlinear dynamic inversion, and separation of tracking design and robustness design. This approach can effectively accommodate modeling error and disturbance while removing those widely used linearization techniques for nonlinear plants/processes. To assure the expansion and applications, it analyses the key properties associated with the UTDF-IMC. For initial benchmark testing, computational experiments are conducted using MATLAB/Simulink for two mismatched linear and nonlinear plants. Further tests consider an industrial system, in which the IMC of a Permanent Magnet Synchronous Motor (PMSM) is simulated to demonstrate the effectiveness of the design procedure for potential industrial applications.

4.
Micromachines (Basel) ; 11(9)2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32839379

RESUMEN

Recently, soft actuators have been expected to have many applications in various fields. Most of the actuators are composed of flexible materials and driven by air pressure. The 3-DOF micro-hand, which is a kind of soft actuator, can realize a three degrees of freedom motion by changing the applied air pressure pattern. However, the input-output relation is nonlinear and complicated. In previous research, a model of the micro-hand was proposed, but an error between the model and the experimental results was large. In this paper, modeling for the micro-hand is proposed by using multi-output support vector regression (MSVR) and ant colony optimization (ACO), which is one of the artificial intelligence (AI) methods. MSVR estimates the input-output relation of the micro-hand. ACO optimizes the parameters of the MSVR model.

5.
Arthrosc Tech ; 9(12): e1927-e1935, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33381402

RESUMEN

The primary repair technique of acute anterior cruciate ligament (ACL) tears has been controversially discussed over the past few decades. Many different suture techniques have been reported for ACL repair, but these procedures showed high re-rupture rates and poor results. Recently, the literature has reported excellent outcomes with primary ACL repair. There has been a resurging interest in modernizing and augmenting primary ACL repair. This article describes a technique that uses internal brace augmentation and a knotless anchor (Arthrex) implant for primary anatomic double-bundle ACL repair after an acute proximal ACL tear. This technique aims to advocate natural healing by the high-strength internal brace augmentation and knotless anchor as a provisional scaffold during the healing phase and early mobilization. This technique might be an alternative to conventional ACL reconstruction in the appropriate selection of patients.

6.
Medicine (Baltimore) ; 99(48): e23476, 2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33235137

RESUMEN

BACKGROUND: Many systematic reviews have compared the short-term outcomes of anterior cruciate ligment (ACL)reconstruction with hamstring and patellar tendon autograft,but few differences have been observed. The purpose of this meta-analysis was to compare the medium-term outcome of bone-patellar tendon-bone and hamstring tendon autograft for anterior cruciate ligament reconstruction in terms of clinical function, knee stability, postoperativecomplications, and osteoarthritis changes. METHODS: This meta-analysis followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The PubMed, Embase, and the Cochrane Library databases were searched from inception to November 2, 2019. This meta-analysis included only randomized controlled trials that compared BPTB and HT autografts for ACL reconstruction with a 5-year minimum follow-up. The Cochrane Collaboration's risk-of-bias tool was used to estimate the risk-of-bias for all included studies. RevMan 5.3 software was used to performed statistical analysis of the outcomes. RESULTS: Fifteen RCTs, involving 1298 patients (610 patients in the BPTB group and 688 patients in the HT group) were included. In terms of clinical function, no significant difference was found in the objective International Knee Documentation Committee score (OR = 0.94, 95%CI: 0.64-1.37, P = .75), Lysholm knee score (MD = -2.26, 95%CI: -4.56 to 0.05, P = .06), return to preinjury activity level (OR = 1.01, 95%CI: 0.67-1.52, P = .96), and Tegner activity level (OR = 0.03, 95%CI: -0.36 to 0.41, P = .89). There was no statistically significant difference in the Lachman test (OR = 0.86, 95%CI: 0.5-1.32, P = .50), pivot-shift test (OR = 0.68, 95%CI: 0.44-1.06, P = .09), and side-to-side difference (MD = -0.32, 95%CI: -0.81 to 0.16, P = .19). As for postoperative complications and OA changes, there were no statistically significant difference in flexion loss (OR = 1.09, 95%CI: 0.47-2.54, P = .85) and OA changes (OR = 0.76, 95%CI: 0.52-1.10, P = .15), but we found significant differences in favor of the HT group in the domains of kneeling pain (OR = 1.67, 95%CI: 1.04-2.69, P = .03), anterior knee pain (OR = 2.90, 95%CI: 1.46-5.77, P = .002), and extension loss (OR = 1.75, 95%CI: 1.12-2.75, P = .01). There was a significant difference in favor of the BPTB group in the domain of graft failure (OR = 0.59, 95%CI: 0.38-0.91, P = .02). CONCLUSIONS: Based on the results above, HT autograft is comparable with the BPTB autograft in terms of clinical function, postoperative knee stability, and OA changes, with a medium-term follow-up. The HT autograft for ACL reconstruction carries a lower risk of complications, such as anterior knee pain, kneeling pain, and extension loss, but an increased incidence of graft failure. Patients should be informed of the differences when deciding on graft choice with their physician.


Asunto(s)
Reconstrucción del Ligamento Cruzado Anterior/métodos , Autoinjertos , Plastía con Hueso-Tendón Rotuliano-Hueso , Tendones Isquiotibiales/trasplante , Artralgia/etiología , Humanos , Osteoartritis de la Rodilla/etiología , Evaluación del Resultado de la Atención al Paciente , Complicaciones Posoperatorias , Ensayos Clínicos Controlados Aleatorios como Asunto , Rango del Movimiento Articular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA