Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biogerontology ; 25(6): 1115-1143, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39312047

RESUMEN

The active ingredients of plants were screened by molecular docking technology and the result were verified. According to the verification results of molecular docking, the five active ingredients were combined in equal proportions to form a compound drug. In the HaCaT photoaging model, the effects of the compound drug on antioxidant and senescence-associated secretory phenotype (SASP) factors of the NF-κB and MAPK pathways were studied via SOD and MDA kits, DCFH-DA fluorescent probes and ELISA. In the skin photoaging model, the effects of the compound drug on antioxidants and the SASP factors of the NF-κB and MAPK pathways were studied via SOD, MDA, and CAT kits and ELISA. The results revealed that the compound drug increased SOD activity, decreased the MDA content and intracellular ROS, inhibited IL-6 in the NF-κB pathway, and inhibited MMP-1 and collagen I in the MAPK pathway. The results of HE, Masson and Victoria blue skin staining revealed that the compound drug inhibited abnormal thickening of the epidermis, abnormal breaking and accumulation of collagen fibers and elastic fibers, and maintained their orderly arrangement. Moreover, the results revealed that the compound drug increased SOD, CAT and collagen I, and reduced the MDA content, the SASP factors IL-6 and TNF-α of the NF-κB pathway, and the SASP factors MMP-1 of the MAPK pathway. The above results indicate that the active ingredients of the compound drug screened by molecular docking have the potential to reduce skin photoaging.


Asunto(s)
Simulación del Acoplamiento Molecular , Envejecimiento de la Piel , Envejecimiento de la Piel/efectos de los fármacos , Humanos , Antioxidantes/farmacología , FN-kappa B/metabolismo , Extractos Vegetales/farmacología , Piel/efectos de los fármacos , Piel/metabolismo , Piel/patología , Células HaCaT , Metaloproteinasa 1 de la Matriz/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos
2.
Biochem Genet ; 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38316653

RESUMEN

Chronic kidney disease (CKD) is a serious threat to human health worldwide, and its incidence is increasing annually. A growing amount of information is emerging about the role of micoRNAs (miRNAs) in the regulation of renal fibrosis, which has aroused interest in the development of drugs that block pathogenic miRNAs or restore protective miRNAs levels. To clarify the role of miRNAs in CKD, we selected patients with significant renal fibrotic disease (diabetic nephropathy (DN) and focal segmental glomerulosclerosis (FSGS)) as the disease group, and patients with little or no renal fibrotic disease (minimal change disease (MCD) and renal carcinoma adjacent to normal kidney) as controls. Significantly differentially expressed miRNAs were obtained by human kidney tissue sequencing, subsequently verified in mice models of DN and FSGS, and subsequently inhibited or overexpressed in human renal tubular epithelial cells (HK-2) stimulated by high glucose (HG) and TGF-ß1 in vitro. Therefore, the mechanism of its action in renal fibrosis was further elaborated. Finally, the downstream target genes of the corresponding miRNAs were verified by bioinformatics analysis, qRT-PCR, western blot and double luciferase report analysis. Two novel miRNAs, hsa-miR-1470-3p (miR-1470) and hsa-miR-4483-3p (miR-4483), were detected by renal tissue sequencing in the disease group with significant renal fibrosis (DN and FSGS) and the control group with little or no renal fibrosis (MCD and normal renal tissue adjacent to renal carcinoma). Subsequent human renal tissue qRT-PCR verified that the expression of miR-1470 was significantly increased, while the expression of miR-4483 was markedly decreased in the disease group (p < 0.05). Moreover, in vivo DN and FSGS mice models, the expression levels of miR-1470 and miR-4483 were consistent with the results of human kidney tissue. In vitro, miR-4483 was suppressed, whereas miR-1470 was induced by treatment with TGF-ß1 or HG. Inhibition of miR-1470 or overexpression of miR-4483 promoted HG or TGF-ß1-induced fibrosis in HK-2 cells. Further study revealed that MMP-13 and TIMP1 were the target genes ofmiR-1470 and miR-4483, respectively. Our study identifies newly dysregulated miRNA profiles related to fibrosis kidneys. miR-1470 and miR-4483 are demonstrated to participate in kidney fibrosis by regulation of MMP-13, TIMP1 respectively. Our results may represent a promising research direction for renal disorders and help identify new biomarkers and therapeutic targets for CKD.

3.
J Environ Manage ; 354: 120454, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38412733

RESUMEN

Mn-containing Li-ion batteries have become primary power sources for electronic devices and electric vehicles because of their high-energy density, extended cycle life, low cost, and heightened safety. In recent years, Li-ion batteries (LIBs) have undergone rapid updates, paralleling the swift advancement of the lithium battery industry, resulting in a growing accumulation of LIB scraps annually, necessitating comprehensive recovery strategies. This article reviews the recent progress in recovering spent Mn-containing LIBs (SM-LIBs), specifically focusing on LiMn2O4 and ternary LiCoxMnyNizO2 (NCM). Initially, the study analyzes the current resource profile of SM-LIBs and elucidates their service mechanisms. Subsequently, the study explores the recovery of SM-LIBs, discussing various methods such as the hydrometallurgical approach, combined pyrolytic treatment-wet leaching process, bioleaching pathway, and electrochemical extraction. These discussions include recovery processes, reaction principles, and technological features. In addition, this study evaluates the potential applications of these recovery technologies, considering aspects such as complexity, economic viability, energy consumption, environmental sustainability, and scalability. Finally, it summarizes the challenges associated with the comprehensive recovery and resource utilization of SM-LIBs and offers insights into future directions.


Asunto(s)
Litio , Metales , Reciclaje , Suministros de Energía Eléctrica , Iones
4.
BMC Microbiol ; 23(1): 276, 2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37773054

RESUMEN

BACKGROUND: Staphylococcus haemolyticus (S. haemolyticus) is the main etiological factor in skin and soft tissue infections (SSTI). S. haemolyticus infections are an important concern worldwide, especially with the associated biofilms and drug resistance. Herein, we investigated the inhibitory effect of Flavaspidic acid BB obtained from plant extractions on clinical S. haemolyticus strains and their biofilms. Moreover, we predicted its ability to bind to the protein-binding site by molecular simulation. Since the combination of Hsp70 and RNase P synthase after molecular simulation with flavaspidic acid BB is relatively stable, enzyme-linked immunosorbent assay (ELISA) was used to investigate Hsp70 and RNase P synthase to verify the potential antimicrobial targets of flavaspidic acid BB. RESULTS: The minimum inhibitory concentrations (MIC) of flavaspidic acid BB on 16 clinical strains of S. haemolyticus was 5 ~ 480 µg/mL, and BB had a slightly higher inhibitory effect on the biofilm than MUP. The inhibitory effect of flavaspidic acid BB on biofilm formation was better with an increase in the concentration of BB. Molecular simulation verified its ability to bind to the protein-binding site. The combination of ELISA kits showed that flavaspidic acid BB promoted the activity of Hsp70 and inhibited the activity of RNase P, revealing that flavaspidic acid BB could effectively inhibit the utilization and re-synthesis of protein and tRNA synthesis, thus inhibiting bacterial growth and biofilm formation to a certain extent. CONCLUSIONS: This study could potentially provide a new prospect for the development of flavaspidic acid BB as an antibacterial agent for resistant strains.


Asunto(s)
Ribonucleasa P , Staphylococcus , Ribonucleasa P/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Butirofenonas/farmacología , Pruebas de Sensibilidad Microbiana , Biopelículas
5.
Inflamm Res ; 72(9): 1811-1828, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37665342

RESUMEN

BACKGROUND: Intervertebral disc degeneration (IDD) is a leading cause of low back pain (LBP), posing a significant socioeconomic burden. Recent studies highlight the crucial role of inflammatory microenvironment in IDD progression. METHOD: A keyword-based search was performed using the PubMed database for published articles. RESULTS AND CONCLUSIONS: Dysregulated expression of inflammatory cytokines disrupts intervertebral disc (IVD) homeostasis, causing atrophy, fibrosis, and phenotypic changes in nucleus pulposus cells. Modulating the inflammatory microenvironment and restoring cytokine balance hold promise for IVD repair and regeneration. This comprehensive review systematically examines the expression regulation, pathological effects, therapeutic strategies, and future challenges associated with the inflammatory microenvironment and relevant cytokines in IDD. Key inflammatory cytokines, including interleukins (IL), tumor necrosis factor-alpha (TNF-α), and chemokines, exhibit significant pathological effects in IDD. Furthermore, major therapeutic modalities such as chemical antagonists, biologics, plant extracts, and gene transcription therapies are introduced to control and ameliorate the inflammatory microenvironment. These approaches provide valuable insights for identifying potential targets in future anti-inflammatory treatments for IDD.

6.
Mol Biol Rep ; 49(4): 2915-2924, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35064409

RESUMEN

OBJECTIVE: To investigate the role of microRNA-155-5p on apoptosis and inflammatory response in human renal glomerular endothelial cells (HRGEC) cultured with high glucose. METHODS: The primary HRGEC were mainly studied, light microscopy was used to detect changes in cell morphology. Quantitative Real Time-Polymerase Chain Reaction, Western Blot, immunofluorescence were aimed to observe the mRNA and protein expression levels of target gene ETS-1, downstream factors VCAM-1, MCP-1 and cleaved caspase-3 in each group after high glucose treatment as well as transfection with miR-155 mimics or inhibitor. RESULTS: The expression of inflammatory factors and apoptosis of HRGEC cells increased under high glucose treatment. Compared with normal-glucose treatment, the expression of microRNA-155 markedly increased in HRGECs treated with high-glucose, as well as the mRNA and protein levels of ETS-1, VCAM-1, MCP-1 and cleaved caspase-3. Overexpression of microRNA-155 remarkably downregulated mRNA and protein levels of ETS-1, VCAM-1, MCP-1 and cleaved caspase-3, whereas miRNA-155 knockdown upregulated their levels. In addition, HRGEC cells were transfected with miR-155 mimics and ETS-1 siRNA with high glucose stimulation. The expression of ETS-1 was positively correlated with the expression of downstream factors VCAM-1 and MCP-1. These results suggest that ETS-1 can mediate endothelial cell inflammation by regulating VCAM-1 and MCP-1. CONCLUSION: MiR-155 can negatively regulate the expression of target gene ETS-1 and its downstream factors VCAM-1, MCP-1 and cleaved caspase-3, thus mediating the inflammatory response and apoptosis of HRGEC.


Asunto(s)
Células Endoteliales , MicroARNs , Apoptosis/genética , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Células Endoteliales/patología , Glucosa/administración & dosificación , Humanos , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Glomérulos Renales/efectos de los fármacos , Glomérulos Renales/metabolismo , Glomérulos Renales/patología , MicroARNs/genética , MicroARNs/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Molécula 1 de Adhesión Celular Vascular/genética , Molécula 1 de Adhesión Celular Vascular/metabolismo
7.
J Environ Manage ; 311: 114815, 2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35247760

RESUMEN

Green credit policy (GCP) is an important practical exploration to guide green economic development by financial means. Empirically, however, little is known about the relationship between GCP and industrial carbon emissions intensity (CEI). This study aims to investigate the impact of GCP on the CEI of heavily polluting industries (HPIs) by treating Green Credit Guidelines as a quasi-natural experiment. Using Chinese industry-level panel data and a difference-in-difference model, we find that after the implementation of GCP, the CEI of HPIs decreased by an average of 0.267 tons/104 yuan per year compared to non-HPIs. Resource allocation effect and green innovation effect are two channels through which GCP reduces CEI of HPIs. Moreover, the GCP has a greater effect on the CEI of HPIs with lower state-owned ratios, higher total factor productivity and higher capital dependence. These findings provide policy insights for promoting industrial carbon emissions reduction.

8.
Can J Microbiol ; 67(10): 724-736, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34153193

RESUMEN

Lavender essential oil (LEO), a natural antimicrobial agent, is generally recognized as safe and effective in the inhibition of phytopathogenic fungi. Direct contact and fumigation (in vivo and in vitro) were used to study the fungistatic effect of LEO on Monilinia fructicola. Additionally, the effect on the ultrastructure of cells and the degree of destruction of the cell membrane of M. fructicola were revealed. In addition, the effects of LEO on the expression levels of apoptosis-related genes in M. fructicola cells were detected, and GC-MS was used to analyze the main components of LEO. LEO had a good inhibitory efficacy against M. fructicola in flat peaches, with almost complete growth inhibition at 800 µL/L. These effects were associated with the leakage of cytoplasmic contents, hyphal distortion, and spore disruption. Moreover, the expression of apoptosis RTG1 and RLM1 genes increased with LEO treatment. These results demonstrate that LEO can inhibit M. fructicola by inducing cytoplasmic membrane damage and cell apoptosis in fungi, and that the major ingredients of LEO are monoterpenes and sesquiterpenes, which are presumed to contribute to the inhibitory effects.


Asunto(s)
Ascomicetos , Lavandula , Aceites Volátiles , Prunus persica , Antifúngicos/farmacología , Ascomicetos/genética , Frutas , Aceites Volátiles/farmacología
9.
Arch Biochem Biophys ; 690: 108471, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32622788

RESUMEN

Stilbenes, an active substances closely related to resistance and quality of grapes, are rarely found in natural resources. However its cumulative amount is affected by ultraviolet radiation (UV). The purpose of this study is to screen key genes in biosynthesis of stilbenes Trans-scripusin A and explore its synthetic pathway. We tested content of stilbenes with UHPLC-QQQ-MS2, results revealed that stilbenes accumulation is positively correlated with UV-B exposure time. Then, we performed transcriptome high-throughput sequencing of grapes under treatments. Results shown that 13,906 differentially expressed genes were obtained, which were mainly enriched in three major regions (ribosome, plant-pathogen interaction and biosynthesis of flavonoid). Three genes of trans-scripusin A synthesis pathway key got by combining KEGG annotation and reference gene HsCYP1B1. Phylogenetic analysis showed that SAH genes had high homology with other hydroxylase genes, and distributed in two subgroups. Gene structure analysis showed that SAH genes contained four exons, indicating that gene has low genetic diversity. Chromosome localization revealed that SAH genes were distributed on different chromosomes, in addition, the number of gene pairs between Vitis vinifera and other species was not related to genome size of other species. The expression profiles of SAH genes in different parts of Vitis vinifera L. were analyzed using qRT-PCR analysis, results indicated that expression of SAH genes be specific to fruit part. These paper provide theoretical basis for further study of polyphenols biosynthesis pathway in grape fruits. The study provides novel insights for further understanding quality of grapes response to UV radiation.


Asunto(s)
Frutas/genética , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , ARN Mensajero/efectos de la radiación , Vitis/genética , Vías Biosintéticas , Cromatografía Líquida de Alta Presión , Flavonoides/metabolismo , Frutas/metabolismo , Frutas/efectos de la radiación , Ensayos Analíticos de Alto Rendimiento , Conformación de Ácido Nucleico , Filogenia , Polifenoles/metabolismo , RNA-Seq , Ribosomas/metabolismo , Estilbenos/metabolismo , Estrés Fisiológico/genética , Estrés Fisiológico/efectos de la radiación , Espectrometría de Masas en Tándem , Transcriptoma/efectos de la radiación , Rayos Ultravioleta , Vitis/metabolismo , Vitis/efectos de la radiación
10.
Drug Metab Dispos ; 42(5): 844-52, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24510383

RESUMEN

Oleanolic acid (OA) is a natural triterpenoid and has been demonstrated to protect against varieties of hepatotoxicants. Recently, however, OA at high doses was reported to produce apparent cholestasis in mice. In this study, we characterized the protective effect of OA at low doses against lithocholic acid (LCA)-induced cholestasis in mice and explored further mechanisms. OA cotreatment (5, 10, and 20 mg/kg, i.p.) significantly improved mouse survival rate, attenuated liver necrosis, and decreased serum alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase; more importantly, serum total bile acids and bilirubin, as well as hepatic total bile acids were also remarkably reduced. Gene and protein expression analysis showed that hepatic expression of multidrug resistance-associated protein 2 (Mrp2), Mrp3, and Mrp4 was significantly increased by OA cotreatment, whereas other bile acid metabolism- and transport-related genes, including Na+/taurocholate cotransporter, organic anion transporter 1b2, bile salt export pump, multidrug resistance protein 3, Cyp3a11, Cyp2b10, Sulfotransferase 2a1 (Sult2a1), and UDP-glucuronosyltransferase 1a1 (Ugt1a1), were only slightly changed. OA also caused increased nuclear factor-E2-related factor (Nrf2) mRNA expression and nuclear protein accumulation, whereas nuclear receptors farnesoid X receptor (FXR), pregnane X receptor (PXR), and constitutive androstane receptor were not significantly influenced by OA. Luciferase (Luc) assays performed in HepG2 cells illustrated that OA was a strong Nrf2 agonist with moderate PXR and weak FXR agonism. Finally, in mouse primary cultured hepatocytes, OA dose- and time-dependently induced expression of Mrp2, Mrp3, and Mrp4; however, this upregulation was abrogated when Nrf2 was silenced. In conclusion, OA produces a protective effect against LCA-induced hepatotoxicity and cholestasis, possibly due to Nrf2-mediated upregulation of Mrp2, Mrp3, and Mrp4.


Asunto(s)
Colestasis/prevención & control , Expresión Génica/efectos de los fármacos , Ácido Litocólico/farmacología , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Factor 2 Relacionado con NF-E2/metabolismo , Ácido Oleanólico/uso terapéutico , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Colestasis/inducido químicamente , Colestasis/metabolismo , Relación Dosis-Respuesta a Droga , Células Hep G2 , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Pruebas de Función Hepática , Masculino , Ratones , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2/agonistas , Ácido Oleanólico/administración & dosificación , Cultivo Primario de Células , Regulación hacia Arriba
11.
J Pharmacol Sci ; 126(2): 146-54, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25341566

RESUMEN

The pregnane X receptor (PXR, NR1I2), a member of the nuclear receptor superfamily, is activated by a number of clinically prescribed drugs and herbal extracts. The inducible expression of several important cytochrome P450 (CYP450) enzymes has been shown to be regulated by the activation of PXR in the liver. In the current study, reporter gene-transfected cells were used to identify potential antagonists of PXR. Here, we showed that resveratrol (RES), a natural polyphenolic compound could significantly suppress the rifampicin-induced PXR transactivation of the CYP3A4 promoter. Treatment of hPXR-over-expressed cells with RES reduced the rifampicin-inducible expression of CYP3A4 in a concentration-dependent manner. Moreover, the induction of mRNA and protein expression of CYP3A11 by pregnenolone 16α-carbonitrile was also significantly reduced when RES was applied in primary cultures of mouse hepatocytes. Taking together, these findings suggest that RES can attenuate the PXR-mediated induction of CYP3A enzyme. Therefore, it would be possible for RES to antagonize the elevation in CYP3A-mediated drug metabolism by identified PXR activators.


Asunto(s)
Receptores de Esteroides/antagonistas & inhibidores , Estilbenos/farmacología , Animales , Células Cultivadas , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Relación Dosis-Respuesta a Droga , Inducción Enzimática/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Hepatocitos/metabolismo , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Endogámicos BALB C , Receptor X de Pregnano , Carbonitrilo de Pregnenolona/farmacología , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Resveratrol , Rifampin/antagonistas & inhibidores , Activación Transcripcional/efectos de los fármacos
12.
Chem Biol Drug Des ; 103(1): e14405, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37989501

RESUMEN

Gastric cancer currently has no effective treatment due to its high metastasis and heterogeneity. It has been reported that ropivacaine (Rop) can inhibit the growth, migration, and invasion of gastric cancer. However, the therapeutic mechanism of Rop still needs to be further explored to provide insights for its clinical application. This study aimed to explore the effects of Rop on the growth, migration, and invasion of gastric cancer cells and the underlying mechanisms. The expression levels of SNX10 were assessed in gastric cancer tissues and cell line AGS by qRT-PCR. Cell Counting Kit-8 (CCK8) assay, wound-healing assay, and transwell assay were then used to examine the effects of Rop on the AGS cell viability, migration, invasion, and proliferation, respectively. Additionally, colony formation assay was used to measure cell proliferation ability, and flow cytometry was used to detect apoptosis level. Protein levels of SNX10, SRC, and STAT3 were detected by western blot. According to the experimental results, the decreased SNX10 mRNA expression was observed in gastric cancer tissue and cell line AGS. Rop inhibited the proliferation, migration, and invasion of AGS cells, but promoted apoptosis and upregulated SNX10 expression. Moreover, Rop inhibited the expression of MMP-2 and MMP-9, phosphorylation of SRC and STAT3. SNX10 knockdown could reverse Rop-induced anticancer effects. Collectively, Rop showed a potential role in preventing proliferation and metastasis of gastric cancer. The action mechanism of Rop may be related to the upregulation of SNX10 expression and further inhibition of SRC/STAT3 signaling pathway. Our findings provide new insights into the anticancer properties of Rop.


Asunto(s)
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamiento farmacológico , Ropivacaína/farmacología , Ropivacaína/uso terapéutico , Movimiento Celular , Transducción de Señal , Proliferación Celular , Línea Celular Tumoral , Apoptosis , Regulación Neoplásica de la Expresión Génica , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Nexinas de Clasificación/genética , Nexinas de Clasificación/metabolismo
13.
Int J Biol Macromol ; 281(Pt 3): 136481, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39393735

RESUMEN

Developing titanium-based dental implants with both excellent antibacterial properties and good osseointegration is crucial for the success of the implant operation and the long-term durability of the implant. In this study, a polydopamine-based coating was created by attaching TiO2 nanosheets-cyanine composites onto the titanium surface, enabling the integration of effective photothermal antibacterial therapy with osseointegration. The exceptional dual-photothermal conversion abilities of polydopamine and cyanine in the coating resulted in outstanding photothermal antibacterial and antibiofilm therapy against four types of bacteria. Furthermore, TiO2 nanosheets promoted the adhesion, proliferation and early osteogenic differentiation of osteoblasts. In an infected dental implant model in rats, the developed coating exhibited potent antibacterial activity and remarkable osteogenic differentiation in the bone, leading to increased bone formation around the implants. This innovative approach, combining photothermal therapy with osteogenic two-dimensional nanomaterials, presents a novel method for surface functionalization of implants to achieve effective antibacterial and osseointegration capabilities.

14.
Drug Des Devel Ther ; 18: 1499-1514, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38716368

RESUMEN

Background: Ferroptosis plays a crucial role in the occurrence and development of cerebral ischemia-reperfusion (I/R) injury and is regulated by mitogen-activated protein kinase 1/2 (ERK1/2). In China, Naodesheng Pills (NDSP) are prescribed to prevent and treat cerebrosclerosis and stroke. However, the protective effects and mechanism of action of NDSP against cerebral I/R-induced ferroptosis remain unclear. We investigated whether NDSP exerts its protective effects against I/R injury by regulating ferroptosis and aimed to elucidate the underlying mechanisms. Methods: The efficacy of NDSP was evaluated using a Sprague-Dawley rat model of middle cerebral artery occlusion and an in vitro oxygen-glucose deprivation/reoxygenation (OGD/R) model. Brain injury was assessed using 2,3,5-triphenyltetrazolium chloride (TTC), hematoxylin and eosin staining, Nissl staining, and neurological scoring. Western blotting was performed to determine the expression levels of glutathione peroxidase 4 (GPX4), divalent metal-ion transporter-1 (DMT1), solute carrier family 7 member 11 (SLC7A11), and transferrin receptor 1 (TFR1). Iron levels, oxidative stress, and mitochondrial morphology were also evaluated. Network pharmacology was used to assess the associated mechanisms. Results: NDSP (1.08 g/kg) significantly improved cerebral infarct area, cerebral water content, neurological scores, and cerebral tissue damage. Furthermore, NDSP inhibited I/R- and OGD/R-induced ferroptosis, as evidenced by the increased protein expression of GPX4 and SLC7A11, suppression of TFR1 and DMT1, and an overall reduction in oxidative stress and Fe2+ levels. The protective effects of NDSP in vitro were abolished by the GPX4 inhibitor RSL3. Network pharmacology analysis revealed that ERK1/2 was the core target gene and that NDSP reduced the amount of phosphorylated ERK1/2. Conclusion: NDSP exerts its protective effects against I/R by inhibiting cerebral I/R-induced ferroptosis, and this mechanism is associated with the regulation of ferroptosis via the ERK1/2 signaling pathway.


Asunto(s)
Medicamentos Herbarios Chinos , Ferroptosis , Sistema de Señalización de MAP Quinasas , Ratas Sprague-Dawley , Daño por Reperfusión , Ferroptosis/efectos de los fármacos , Animales , Ratas , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Masculino , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/metabolismo , Modelos Animales de Enfermedad , Fármacos Neuroprotectores/farmacología
15.
Exp Gerontol ; 188: 112380, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38382680

RESUMEN

OBJECTIVE: Intervertebral disc degeneration (IVDD) constitutes a crucial pathological foundation for spinal degenerative diseases (SDD) and stands as a primary contributor to both low back pain (LBP) and disability. The progression of IVDD is linked to structural and functional alterations in tissues, where an imbalance in the inflammatory microenvironment can induce extracellular matrix (ECM) degradation, senescence, and apoptosis. This imbalance is a key pathomechanism in the disease's development, gaining considerable attention in recent years. This study aims to conduct a bibliometric analysis of publications pertaining to the inflammatory mechanisms of IVDD to quantitatively assess current research hotspots and directions. METHODS: In this study, we queried the Web of Science Core Collection (WOSCC) database covering the period from January 1, 2001, to November 7, 2023. Content in this area was analyzed and visualized using software such as Citespace, Vosviewer, and the bibliometrix package. RESULTS: Findings indicate a consistent annual increase in the number of publications, highlighting the widespread attention garnered by research on the inflammatory mechanisms of IVDD. In terms of journal research, Spine emerged with the highest number of publications, along with significantly elevated total citations and average citations compared to other journals. Regarding country analysis, China led in the number of publications, while the USA claimed the highest number of citations and total link strength. Institutional analysis revealed Sun Yat-sen University as having the highest number of publications and total link strength, with Thomas Jefferson University securing the highest total citations. Author analysis identified Ohtori, S. with the highest number of publications, Risbud, M.V. with the highest number of citations, and Inoue, G. with the highest total link strength, all of whom have made significant contributions to the field's development. Citation and co-citation analyses indicated that highly cited documents primarily focused on classical studies exploring inflammatory mechanisms in IVDD pathogenesis. Keyword analysis showcased the ongoing research hotspot as the further investigation of mechanisms and treatment studies. Recent years have seen a shift towards exploring pyroptosis, necrotic apoptosis, autophagy, ferroptosis, oxidative stress, and bacterial infection, among other mechanisms. In terms of treatment, alongside traditional monomer, drug, and compound therapies for IVDD, research is increasingly concentrating on stem cell therapy, exosomes, hydrogels, and scaffolds. CONCLUSION: This bibliometric analysis of research on inflammatory mechanisms in IVDD provides insights into the current status, hotspots, and potential future trends. These findings can serve as a valuable reference and guide for researchers in the field.


Asunto(s)
Degeneración del Disco Intervertebral , Humanos , Bibliometría , Apoptosis , Autofagia , China
16.
J Oral Microbiol ; 16(1): 2361402, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38860120

RESUMEN

Background: This study aimed to investigate the effect of honokiol combined with resveratrol on bacteria responsible for oral malodor and their biofilm. Method: This study investigated drug's MIC, FICI and dynamic bactericidal susceptibility activities against Pg and Fn. The effects of drugs on biofilm metabolic activity, biofilm total amount, and biofilm microstructure were determined by CCK-8 experiment, semi-quantitative adhesion experiment and SEM, respectively. The effects of drugs on biofilm genes, extracellular polysaccharides, proteins and DNA content were determined by qRT-PCR, phenol-sulfuric acid method, BCA method and Nano Drop one C, respectively. Results: The combination had synergistic antibacterial effect on Pg and Fn. 1/2×MIC and 1×MIC combination inhibit the whole process of Pg and Fn growth. The results showed that the combination effectively reduce biofilm metabolic activity and total amount, and destroy biofilm microstructure. The results showed that the combination downregulate the gene expression both Pg and Fn, reduce extracellular polysaccharides and DNA of Pg, and reduce extracellular proteins and DNA of Fn. Conclusion: This study showed that the combination had a synergistic antibacterial effect on Pg and Fn, reduced the biofilm extracellular matrix, inhibited biofilm formation, and downregulated the expression of genes related to biofilm formation.

17.
Phytomedicine ; 127: 155480, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38484462

RESUMEN

BACKGROUND: Intervertebral disc degeneration (IVDD) is an essential cause of low back pain (LBP), the incidence of which has risen in recent years and is progressively younger, but treatment options are limited, placing a serious economic burden on society. Sanbi decoction (SBD) is an important classical formula for the treatment of IVDD, which can significantly improve patients' symptoms and is a promising alternative therapy. PURPOSE: The aim of this study is to investigate the safety and efficacy of SBD in the treatment of IVDD and to explore the underlying mechanisms by using an integrated analytical approach of microbiomics and serum metabolomics, as well as by using molecular biology. METHODS: A rat IVDD puncture model was established and treated by gavage with different concentrations of SBD, and clean faeces, serum, liver, kidney, and intervertebral disc (IVD) were collected after 4 weeks. We assessed the safety by liver and kidney weighing, functional tests and tissue staining, the expression of tumor necrosis factor-alpha (TNF-ɑ), interleukin 1ß (IL-1ß) and interleukin 6 (IL-6) inflammatory factors in serum was detected by ELISA kits, and X-ray test, magnetic resonance imaging (MRI) examination, immunohistochemistry (IHC), western blotting (WB), hematoxylin-eosin (HE) staining and safranin O-fast green (SO/FG) staining were used to assess the efficacy. Finally, we performed 16S rRNA sequencing analysis on the faeces of different groups and untargeted metabolomics on serum and analyzed the association between them. RESULTS: SBD can effectively reduce the inflammatory response, regulate the metabolic balance of extracellular matrix (ECM), improve symptoms, and restore IVD function. In addition, SBD can significantly improve the diversity of intestinal flora and maintain the balance. At the phylum level, SBD greatly increased the relative abundance of Patescibacteria and Actinobacteriota and decreased the relative abundance of Bacteroidota. At the genus level, SBD significantly increased the relative abundance of Clostridia_UCG-014, Enterorhabdus, and Adlercreutzia, and decreased the relative abundance of Ruminococcaceae_UCG-005 (p < 0.05). Untargeted metabolomics indicated that SBD significantly improved serum metabolites and altered serum expression of 4alpha-phorbol 12,13-didecanoate (4alphaPDD), euscaphic acid (EA), alpha-muricholic acid (α-MCA), 5-hydroxyindoleacetic acid (5-HIAA), and kynurenine (Kyn) (p < 0.05), and the metabolic pathways were mainly lipid metabolism and amino acid metabolism. CONCLUSIONS: This study demonstrated that SBD can extensively regulate intestinal flora and serum metabolic homeostasis to reduce inflammatory response, inhibit the degradation of ECM, restore IVD height and water content to achieve apparent therapeutic effect for IVDD.


Asunto(s)
Microbioma Gastrointestinal , Degeneración del Disco Intervertebral , Disco Intervertebral , Humanos , Ratas , Animales , Degeneración del Disco Intervertebral/tratamiento farmacológico , Degeneración del Disco Intervertebral/metabolismo , ARN Ribosómico 16S , Disco Intervertebral/metabolismo , Disco Intervertebral/patología , Homeostasis
18.
ACS Biomater Sci Eng ; 10(1): 219-233, 2024 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-38149967

RESUMEN

Low back pain is a common chronic disease that can severely affect the patient's work and daily life. The breakdown of spinal mechanical homeostasis caused by intervertebral disc (IVD) degeneration is a leading cause of low back pain. Annulus fibrosus (AF), as the outer layer structure of the IVD, is often the first affected part. AF injury caused by consistent stress overload will further accelerate IVD degeneration. Therefore, regulating AF injury repair and remodeling should be the primary goal of the IVD repair strategy. Mechanical stimulation has been shown to promote AF regeneration and repair, but most studies only focus on the effect of single stress on AF, and lack realistic models and methods that can mimic the actual mechanical environment of AF. In this article, we review the effects of different types of stress stimulation on AF injury repair and remodeling, suggest possible beneficial load combinations, and explore the underlying molecular mechanisms. It will provide the theoretical basis for designing better tissue engineering therapy using mechanical factors to regulate AF injury repair and remodeling in the future.


Asunto(s)
Anillo Fibroso , Degeneración del Disco Intervertebral , Dolor de la Región Lumbar , Humanos , Anillo Fibroso/metabolismo , Degeneración del Disco Intervertebral/terapia , Degeneración del Disco Intervertebral/metabolismo , Ingeniería de Tejidos , Tratamiento Basado en Trasplante de Células y Tejidos
19.
Planta Med ; 79(17): 1641-7, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24214834

RESUMEN

Praeruptorin A and praeruptorin C, racemic to each other, are main bioactive constituents of the species Peucedanum praeruptorum, traditionally used as a Chinese herbal medicine (also known as Bai-Hua Qian Hu). In the present study, the ability of praeruptorins A and C to activate the constitutive androstane receptor and induce human multidrug resistance-associated protein 2 expressions in HepG2 cells was investigated. The changes in mRNA level, protein expression, and transport activity of multidrug resistance-associated protein 2 were determined by quantitative real-time PCR, Western blot, and the CDF uptake assay, respectively. The effects of constitutive androstane receptor knockdown on multidrug resistance-associated protein 2 mRNA and protein expression were also measured by transient transfection of a specific constitutive androstane receptor siRNA. The results showed that praeruptorin A and praeruptorin C significantly induced the multidrug resistance-associated protein 2 mRNA and protein expression, and enhanced the transport activity of multidrug resistance-associated protein 2. A further study showed that mRNA and protein upregulation were attenuated by transient transfection of a specific constitutive androstane receptor siRNA, suggesting that the upregulation of multidrug resistance-associated protein 2 was mediated by the constitutive androstane receptor. Taken together, our findings indicate that praeruptorin A and praeruptorin C can significantly upregulate multidrug resistance-associated protein 2 expression via the constitutive androstane receptor-mediated pathway in vitro, and this should be taken as an herb-drug interaction.


Asunto(s)
Apiaceae/química , Cumarinas/farmacología , Medicamentos Herbarios Chinos/farmacología , Interacciones de Hierba-Droga , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptor de Androstano Constitutivo , Cumarinas/aislamiento & purificación , Células Hep G2 , Humanos , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Transfección , Regulación hacia Arriba
20.
Yao Xue Xue Bao ; 48(5): 794-8, 2013 May.
Artículo en Zh | MEDLINE | ID: mdl-23888707

RESUMEN

This study is purposed to investigate the effects of praeruptorin A (PA) and praeruptorin C (PC) on UGT1A1 in HepG2 cells through hCAR pathway. PA and PC were incubated with HepG2 cells for 24 h and 48 h, mRNA and protein expressions of UGT1A1 were determined by real-time PCR and Western blotting assays. Additionally, effects of PA and PC on UGT1A1 mRNA and protein expressions were also measured after transient transfection of a specific CAR siRNA for 72 h in HepG2 cells. UGT1A1 mRNA and protein expression levels were significantly increased by PA and PC after incubation for 48 h. Moreover, the mRNA and protein up-regulations of UGT1A1 were attenuated by transient transfection of a specific CAR siRNA, suggesting the induction was mediated by CAR. The results suggest that PA and PC can significantly up-regulate UGT1A1 expression partially via the CAR-mediated pathway.


Asunto(s)
Cumarinas/farmacología , Glucuronosiltransferasa/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Apiaceae/química , Receptor de Androstano Constitutivo , Cumarinas/aislamiento & purificación , Medicamentos Herbarios Chinos/farmacología , Glucuronosiltransferasa/genética , Células Hep G2 , Humanos , Raíces de Plantas/química , Plantas Medicinales/química , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Transducción de Señal , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA