Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Cell Biol Toxicol ; 39(6): 3255-3267, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37768392

RESUMEN

Anthracycline antitumor agents, such as doxorubicin (DOX), are effective in the treatment of solid tumors and hematological malignancies, but anthracycline-induced cardiotoxicity (AIC) limits their application as chemotherapeutics. Dexrazoxane (DEX) has been adopted to prevent AIC. Using a chronic AIC mouse model, we demonstrated that DEX is insufficient to reverse DOX-induced cardiotoxicity. Although therapies targeting autophagy have been explored to prevent AIC, but whether novel autophagy inhibitors could alleviate or prevent AIC in clinically relevant models needs further investigation. Here, we show that genetic ablation of Atg7, a key regulator in the early phase of autophagy, protected mice against AIC. We further demonstrated that SAR405, a novel autophagy inhibitor, attenuated DOX-induced cytotoxicity. Intriguingly, the combination of DEX and SAR405 protected cells against DOX-induced cardiotoxicity in vivo. Using the cardiomyocyte cell lines AC16 and H9c2, we determined that autophagy was initiated during AIC. Our results suggest that inhibition of autophagy at its early phase with SAR405 combined with DEX represents an effective therapeutic strategy to prevent AIC.


Asunto(s)
Cardiotoxicidad , Doxorrubicina , Ratones , Animales , Cardiotoxicidad/tratamiento farmacológico , Cardiotoxicidad/etiología , Cardiotoxicidad/prevención & control , Doxorrubicina/farmacología , Antibióticos Antineoplásicos/toxicidad , Antibióticos Antineoplásicos/metabolismo , Miocitos Cardíacos/metabolismo , Antraciclinas/metabolismo , Antraciclinas/farmacología , Antraciclinas/uso terapéutico , Autofagia , Apoptosis , Estrés Oxidativo
2.
Mikrochim Acta ; 189(12): 471, 2022 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-36434468

RESUMEN

A label-free biosensor based on cupric oxide (CuO) nanoparticles was constructed for the selective detection of Gram-negative bacteria. CuO possesses oxidase-like activity and can catalyze the oxidation of o-phenylenediamine (OPD) to produce oxidized OPD, which has a fluorescence emission at 573 nm under excitation at 423 nm. The mechanism study suggests that the oxygen vacancies of CuO can activate the dissolved oxygen to form superoxide anions, which in turn oxidize OPD. Gram-negative bacteria can reduce part of Cu(II) in CuO to Cu(I) based on their copper homeostasis system, thus inhibiting the oxidation of OPD and decreasing the fluorescence intensity of the catalytic system. This principle was utilized to construct a biosensor to realize the selective detection of Gram-negative bacteria successfully. The biosensor exhibited a good linear correlation toward the logarithm concentration of three Gram-negative bacteria with R2 ≥ 0.985. It was applied to detect three Gram-negative bacteria in eggshell, Chinese cabbage, and the Pearl River water samples, with recoveries ranging from 92.4 to 107%. Moreover, a smartphone-based portable device was designed and fabricated to realize the on-site detection of bacteria. The results of the portable device were comparable to those of fluorescence spectrophotometry, suggesting that the portable device has tremendous potential in the on-site detection of bacteria.


Asunto(s)
Técnicas Biosensibles , Nanopartículas , Cobre , Oxidorreductasas , Técnicas Biosensibles/métodos , Bacterias Gramnegativas , Bacterias , Oxígeno
3.
Int J Biol Macromol ; 256(Pt 1): 128398, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38007013

RESUMEN

Environmentally friendly and recycled polydopamine-functionalized electrospun poly(vinyl alcohol)/chitosan nanofibers (PVA/CS/PDA) were prepared through a low-energy-consumption procedure. The PDA coating endows PVA/CS/PDA nanofibers with good water stability. The PVA/CS/PDA nanofibers have a fibrillar and porous structure that is favorable for Cu(II) to access the active sites of the nanofibers. The adsorption isotherm and kinetics data preferably conform to the Liu isotherm and pseudo-second-order kinetic models, respectively. The maximum adsorption capacity of Cu(II) ions by PVA/CS/PDA nanofibers from the Liu isotherm model is 326.5 mg g-1. The PVA/CS/PDA nanofibers exhibit higher adsorption capacity than some other reported adsorbents. The adsorption mechanism study demonstrates that the Cu(II) adsorption is mainly ascribed to the complexation of Cu(II) with the imino, amino, and hydroxy moieties in PVA/CS/PDA nanofibers. The nanofibers can be employed for 5 cycles without significantly deteriorating performance. More interestingly, a fluorometry method based on the oxidation mimic enzyme activity of Cu(II) was developed to detect low concentrations of Cu(II) using the nanofibers as an adsorbent to preconcentrate Cu(II). The limit of detection is 0.42 mg L-1. The successful removal and detection of Cu(II) in Pearl River and mineral water samples demonstrates the great potential of PVA/CS/PDA nanofibers to remediate Cu(II)-polluted water.


Asunto(s)
Quitosano , Indoles , Nanofibras , Polímeros , Contaminantes Químicos del Agua , Quitosano/química , Alcohol Polivinílico/química , Nanofibras/química , Etanol , Agua/química , Adsorción , Cinética , Contaminantes Químicos del Agua/química
4.
Stem Cell Res Ther ; 15(1): 248, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39113086

RESUMEN

BACKGROUND: The function of hematopoietic stem cells (HSC) is regulated by HSC internal signaling pathways and their microenvironment. Chemokines and chemokine ligands play important roles in the regulation of HSC function. Yet, their functions in HSC are not fully understood. METHODS: We established Cxcr3 and Cxcl10 knockout mouse models (Cxcr3-/- and Cxcl10-/-) to analyze the roles of Cxcr3 or Cxcl10 in regulating HSC function. The cell cycle distribution of LT-HSC was assessed via flow cytometry. Cxcr3-/- and Cxcl10-/- stem/progenitor cells showed reduced self-renewal capacity as measured in serial transplantation assays. To study the effects of Cxcr3 or Cxcl10 deficient bone marrow microenvironment, we transplanted CD45.1 donor cells into Cxcr3-/-or Cxcl10-/- recipient mice (CD45.2) and examined donor-contributed hematopoiesis. RESULTS: Deficiency of Cxcl10 and its receptor Cxcr3 led to decreased BM cellularity in mice, with a significantly increased proportion of LT-HSC. Cxcl10-/- stem/progenitor cells showed reduced self-renewal capacity in the secondary transplantation assay. Notably, Cxcl10-/- donor-derived cells preferentially differentiated into B lymphocytes, with skewed myeloid differentiation ability. Meanwhile, Cxcr3-deficient HSCs demonstrated a reconstitution disadvantage in secondary transplantation, but the lineage bias was not significant. Interestingly, the absence of Cxcl10 or Cxcr3 in bone marrow microenvironment did not affect HSC function. CONCLUSIONS: The Cxcl10 and Cxcr3 regulate the function of HSC, including self-renewal and differentiation, adding to the understanding of the roles of chemokines in the regulation of HSC function.


Asunto(s)
Diferenciación Celular , Quimiocina CXCL10 , Células Madre Hematopoyéticas , Receptores CXCR3 , Animales , Receptores CXCR3/metabolismo , Receptores CXCR3/genética , Quimiocina CXCL10/metabolismo , Quimiocina CXCL10/genética , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/citología , Ratones , Ratones Noqueados , Ratones Endogámicos C57BL , Autorrenovación de las Células , Hematopoyesis , Trasplante de Células Madre Hematopoyéticas
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 287(Pt 2): 122072, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36375287

RESUMEN

Spectrometers are essential analytical devices for analyzing fluid samples in biological, environmental, and disease diagnostic applications. However, the relatively high cost, the lack of portability, and the requirement for a constant power supply of bulky laboratory instruments limit their on-site applications. Herein, a wireless, cost-effective, open-source, and handheld spectrometer was designed and fabricated to realize the colorimetric and fluorescence analyses. It was built from off-the-shelf electronics utilizing 3D printing technology. The assembled device costs as little as $50. It has an overall dimension of 5 × 5 × 8 cm and an overall weight of only 130 g, which can easily fit in the palm of an adult's hand. It can detect light waves in the 405-690 nm range and transmit the read data to the corresponding SpecAnalysis Android application via Bluetooth. The feasibility of the device was demonstrated by the optical detection of Cu(II), bovine serum albumin, and calf thymus DNA. The sensitivity and detection limits of this device were comparable to those of commercial research-grade spectrophotometers and fluorescence spectrometers. The results suggest that the handheld spectrometer can be applied to detect a variety of substances, not limited to quantitative analysis of a specific individual compound.


Asunto(s)
Colorimetría , Refractometría , Espectrometría de Fluorescencia/métodos , Impresión Tridimensional , Albúmina Sérica Bovina
6.
Talanta ; 265: 124920, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37451123

RESUMEN

Rapid screening of bacteria by low-cost and eco-friendly material-based approaches is still a major challenge. Herein, a colorimetric biosensor was designed for the ultrasensitive and rapid detection of Gram-positive bacteria. The biosensor exploited polydopamine and polyethyleneimine (PDA-PEI)-modified papers for separating bacteria and carbon dots (CDs) for selective colorimetric detection of Gram-positive bacteria. Noble metal-free CDs can target Gram-positive bacteria by binding with peptidoglycan and possess peroxidase-like activity. Thus, they can avert the step of modifying recognition probes, facilitating biosensor fabrication, and reducing the cost. This biosensor can detect S. aureus as low as 1 cfu mL-1, L. monocytogenes as low as 5 cfu mL-1, and B. subtilis as low as 9 cfu mL-1 within 55 min. In addition, a portable device was constructed to enable convenient and on-site quantitative detection of Gram-positive bacteria. The feasibility of the biosensor was verified by detecting Gram-positive bacteria in eggshell and sausage samples with recoveries ranging from 91.2% to 110%.


Asunto(s)
Técnicas Biosensibles , Staphylococcus aureus , Colorimetría , Carbono , Bacterias
7.
Leukemia ; 37(7): 1407-1412, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37120691

RESUMEN

Acute myeloid leukaemia (AML) cells metabolise glucose by glycolysis-based re-programming. However, how glucose uptake is partitioned between leukaemia cells and other cells of the bone marrow micro-environment is unstudied. We used a positron emission tomography (PET) tracer 18F fluorodeoxyglucose ([18F]-FDG) probe and transcriptomic analyses to detect glucose uptake by diverse cells in the bone marrow micro-environment in a MLL-AF9-induced mouse model. Leukaemia cells had the greatest glucose uptake with leukaemia stem and progenitor cells having the greatest glucose uptake. We also show the effects of anti-leukaemia drugs on leukaemia cell numbers and glucose uptake. Our data suggest targeting glucose uptake as a potential therapy strategy in AML if our observations are validated in humans with AML.


Asunto(s)
Médula Ósea , Leucemia Mieloide Aguda , Humanos , Ratones , Animales , Médula Ósea/metabolismo , Leucemia Mieloide Aguda/metabolismo , Tomografía de Emisión de Positrones , Células de la Médula Ósea/metabolismo , Células Madre , Fluorodesoxiglucosa F18/metabolismo , Microambiente Tumoral
8.
Front Genet ; 13: 1081262, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36685828

RESUMEN

Background: Acute myeloid leukemia (AML) is a heterogeneous malignant disease. SLC25A1, the gene encoding mitochondrial carrier subfamily of solute carrier proteins, was reported to be overexpressed in certain solid tumors. However, its expression and value as prognostic marker has not been assessed in AML. Methods: We retrieved RNA profile and corresponding clinical data of AML patients from the Beat AML, TCGA, and TARGET databases (TARGET_AML). Patients in the TCGA cohort were well-grouped into two group based on SLC25A1 and differentially expressed genes were determined between the SLC25A1 high and low group. The expression of SLC25A1 was validated with clinical samples. The survival and apoptosis of two AML cell lines were analyzed with SLC25A1 inhibitor (CTPI-2) treatment. Cox and the least absolute shrinkage and selection operator (LASSO) regression analyses were applied to Beat AML database to identify SLC25A1-associated genes for the construction of a prognostic risk-scoring model. Survival analysis was performed by Kaplan-Meier and receiver operator characteristic curves. Results: Our analysis revealed that high expressed level of SLC25A1 in AML patients correlates with unfavorable prognosis. Moreover, SLC25A1 expression was positively associated with metabolism activity. We further demonstrated that the inhibition of SLC25A1 could inhibit the proliferation and increase the apoptosis of AML cells. In addition, a panel of SLC25A1-associated genes, was identified to construct a prognostic risk-scoring model. This SLC25A1-associated prognostic signature (SPS) is an independent risk factor with high area under curve (AUC) values of receiver operating characteristic (ROC) curves. A high SPS in leukemia patients is associated with poor survival. A Prognostic nomogram including the SPS and other clinical parameters, was constructed and its predictive efficiency was confirmed. Conclusion: We have successfully established a SPS prognostic model that predict outcome and risk stratification in AML. This risk model can be used as an independent biomarker to assess prognosis of AML.

9.
Exp Hematol Oncol ; 11(1): 23, 2022 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-35429966

RESUMEN

Dysregulation of MDM2, a p53 negative regulator, frequently occurs in acute myeloid leukemia (AML) and is associated with unfavorable prognoses, rendering the p53-MDM2 axis an attractive target for the development of small-molecule inhibitors. MDM2 antagonists have been intensely developed but only lead to limited clinical activity, suggesting combination with additional drugs is an unmet medical need. In this study, we reported that Triptolide synergized with MDM2 inhibitor Nutlin-3a to suppress cell proliferation and induce mitochondrial-mediated apoptosis in p53 wt AML in vitro and ex vivo. More importantly, Triptolide cooperated with Nutlin-3a to delay tumor growth and abrogate leukemia burden in an AML xenograft model. In addition, we observed that Triptolide and Nutlin-3a were also cooperative in part of p53 deficient cases. Mechanistically, Nutlin-3a upregulated the transcriptional expressions of the p53 downstream targets PUMA and p21, while Triptolide declined the mRNA levels of two anti-apoptotic factors, XIAP and Mcl-1, in p53 wt cells. These effects were more notable when Triptolide and Nutlin-3a were combined. Our results revealed that Triptolide monotherapy exerted its antileukemia effect via both p53-dependent and independent ways, with the latter through perturbation of the MYC-ATF4 axis-mediated ER stress. Collectively, these data suggested that the Triptolide-Nutlin-3a combination might be a novel potential therapeutic intervention for patients with AML and it warrants further clinical evaluations.

10.
Nan Fang Yi Ke Da Xue Xue Bao ; 39(8): 923-929, 2019 Aug 30.
Artículo en Zh | MEDLINE | ID: mdl-31511212

RESUMEN

We analyzed the clinicopathological data of 3 cases of primary intraosseous hematopoietic pseudotumor (IHPT), which had been previously misdiagnosed as malignancies or metastases both clinically and pathologically. Two of the patients received close follow-up for 132 and 100 months, and one patient was lost to follow-up, and the tumors were confirmed to be benign in all the 3 cases. IHPT is a rare benign intraosseous solid lesion consisting of tissues resembling normal hematopoietic tissue, and can be easily misdiagnosed as malignancy. Understanding the clinicopathological features and the outcomes of the disease can facilitate the clinical decisions on individualized diagnosis and therapeutic regimens.


Asunto(s)
Médula Ósea , Trasplante de Células Madre Hematopoyéticas , Estudios de Seguimiento , Humanos
11.
Clin Epigenetics ; 9: 83, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28814980

RESUMEN

BACKGROUND: Many conventional chemotherapeutic drugs are known to be involved in DNA damage, thus ultimately leading to apoptosis of leukemic cells. However, they fail to completely eliminate leukemia stem cells (LSCs) due to their higher DNA repair capacity of cancer stem cells than that of bulk cancer cells, which becomes the root of drug resistance and leukemia recurrence. A new strategy to eliminate LSCs in acute myeloid leukemia (AML) is therefore urgently needed. RESULTS: We report that a low-dose chidamide, a novel orally active benzamide-type histone deacetylase (HDAC) inhibitor, which selectively targets HDACs 1, 2, 3, and 10, could enhance the cytotoxicity of DNA-damaging agents (daunorubicin, idarubicin, and cytarabine) in CD34+CD38- KG1α cells, CD34+CD38- Kasumi cells, and primary refractory or relapsed AML CD34+ cells, reflected by the inhibition of cell proliferation, induction of apoptosis, and increase of cell cycle arrest in vitro. Mechanistically, these events were associated with DNA damage accumulation and repair defects. Co-treatment with chidamide and the DNA-damaging agent IDA gave rise to the production of γH2A.X and inhibited posttranslationally but not transcriptionally the repair gene of ATM, BRCA1, and checkpoint kinase 1 (CHK1) and 2 (CHK2) phosphorylation. Finally, the combination of chidamide and IDA initiated caspase-3 and PARP cleavage, but not caspase-8 and caspase-9, and ultimately induced CD34+CD38- KG1α cell apoptosis. Further analysis of AML patients' clinical characteristics revealed that the ex vivo efficacy of chidamide in combination with IDA in primary CD34+ samples was significantly correlated to peripheral blood WBC counts at diagnosis, while LDH levels and karyotype status had no effect, indicating that the combination regimen of chidamide and IDA could rapidly diminish tumor burden in patients with R/R AML. CONCLUSIONS: These findings provide preclinical evidence for low-dose chidamide in combination with chemotherapeutic agents in treating recurrent/resistant AML as an alternative salvage regimen, especially those possessing stem and progenitor cells.


Asunto(s)
Aminopiridinas/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Benzamidas/farmacología , Quimioterapia/métodos , Leucemia Mieloide Aguda/genética , Células Madre Neoplásicas/efectos de los fármacos , Adolescente , Adulto , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Citarabina/farmacología , Daño del ADN , Reparación del ADN/efectos de los fármacos , Daunorrubicina/farmacología , Femenino , Humanos , Idarrubicina/farmacología , Leucemia Mieloide Aguda/tratamiento farmacológico , Masculino , Células Madre Neoplásicas/química , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA