Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Nanotechnology ; 35(11)2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38081082

RESUMEN

Colloidal gold nanorods (GNRs) have demonstrated their potential to absorb light within specific wavelength bands and induce photothermal effects. However, the unpredictability and lack of adjustability in the broadband spectrum formed by the self-assembly of gold nanospheres or the coupling of various sizes of GNRs have posed significant challenges. To address this, we have developed broadband GNRs (BGNRs) with a predictable and adjustable extinction band in the visible and near-infrared regions. The BGNRs were synthesized by simply mixing GNRs with different aspect ratios, allowing for control over the bandwidths and positions of the extinction bands. Subsequently, the BGNRs were coated with silica and underwent surface modification. The resulting BGNRs@SiO2were then mixed with either polydimethylsiloxane (PDMS) or polyvinylidene fluoride (PVDF) to create BGNRs@SiO2/PDMS (or PVDF) films. The BGNRs@SiO2/PDMS and BGNRs@SiO2/PVDF films both exhibit excellent photothermal performance properties. Additionally, the light absorption intensity of the BGNRs@SiO2/PVDF film linearly increases upon folding, leading to significantly enhanced photothermal performance after folding. This work demonstrates that plasmonic colloidal GNRs, without the need for coupling, can yield predictable and adjustable extinction bands. This finding holds great promise for future development and practical applications, particularly in the transfer of these properties to films.

2.
Nano Lett ; 19(7): 4314-4320, 2019 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-31184897

RESUMEN

Nanoparticle assemblies have generated intense interest because of their novel optical, electronic, and magnetic properties that open up numerous opportunities in fundamental and applied nanophotonics, -electronics, and -magnetics. However, despite the great scientific and technological potential of these structures, it remains an outstanding challenge to reliably fabricate such assemblies with both nanometer-level structural control and precise spatial arrangements on a macroscopic scale. It is the combination of these two features that is key to realizing nanoparticle assemblies' potential, particular for device applications. To address this challenge, we propose a hierarchical assembly approach consisting of both template-particle and particle-particle interactions, whereby the former ensures precise addressability of assemblies on a surface and the latter provides nanometer-level structural control. Template-particle interactions are harnessed via chemical-pattern-directed assembly, and the particle-particle interactions are controlled using DNA-directed self-assembly. To demonstrate the potential of this hierarchical assembly approach, we demonstrate the fabrication of a particularly fascinating assembly: the nanoparticle heterodimer, which possesses a surprisingly rich set of plasmonic properties and is a promising candidate to enable a variety of imaging and sensing applications. Each heterodimer is placed on the surface at predetermined locations, and the precise control of the nanogaps is confirmed by far-field scattering measurements of individual dimers. We further demonstrate that the gap size can be effectively tuned by varying the DNA length. By correlating measured spectra with finite-difference time-domain (FDTD) simulations, we determine the gap sizes to be 4.2 and 5.0 nm-with subnm deviation-for the two DNA lengths investigated. This is one of the best gap uniformities ever demonstrated for surface-bound nanoparticle assemblies. The estimated surface-enhanced Raman scattering (SERS) enhancement factor of these heterodimers is on the order of 105-106 with high reproducibility and predictable polarization-dependence. This hierarchical fabrication technique-employing both template-particle and particle-particle interactions-constitutes a novel platform for the realization of functional nanoparticle assemblies on surfaces and thereby creates new opportunities to implement these structures in a variety of applications.

3.
Nano Lett ; 17(12): 7196-7206, 2017 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-29111760

RESUMEN

An extension of the Maxwell-Faraday law of electromagnetic induction to optical frequencies requires spatially appropriate materials and optical beams to create resonances and excitations with curl. Here we employ cylindrical vector beams with azimuthal polarization to create electric fields that selectively drive magnetic responses in dielectric core-metal nanoparticle "satellite" nanostructures. These optical frequency magnetic resonances are induced in materials that do not possess spin or orbital angular momentum. Multipole expansion analysis of the scattered fields obtained from electrodynamics simulations show that the excitation with azimuthally polarized beams selectively enhances magnetic vs electric dipole resonances by nearly 100-fold in experiments. Multipolar resonances (e.g., quadrupole and octupole) are enhanced 5-fold by focused azimuthally versus linearly polarized beams. We also selectively excite electric multipolar resonances in the same identical nanostructures with radially polarized light. This work opens new opportunities for spectroscopic investigation and control of "dark modes", Fano resonances, and magnetic modes in nanomaterials and engineered metamaterials.

4.
Nano Lett ; 16(3): 1818-25, 2016 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-26871607

RESUMEN

We performed single particle deformation experiments on silica-coated gold nanorods under femtosecond (fs) illumination. Changes in the particle shape were analyzed by electron microscopy and associated changes in the plasmon resonance by electron energy loss spectroscopy. Silica-coated rods were found to be more stable compared to uncoated rods but could still be deformed via an intermediate bullet-like shape for silica shell thicknesses of 14 nm. Changes in the size ratio of the rods after fs-illumination resulted in blue-shifting of the longitudinal plasmon resonances. Two-dimensional spatial mapping of the plasmon resonances revealed that the flat side of the bullet-like particles showed a less pronounced longitudinal plasmonic electric field enhancement. These findings were confirmed by finite-difference time-domain (FDTD) simulations. Furthermore, at higher laser fluences size reduction of the particles was found as well as for particles that were not completely deformed yet.

5.
Chemphyschem ; 14(13): 2893-6, 2013 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-23843257

RESUMEN

Opal shell structures can be fabricated in two ways: By direct assembly from hollow spheres (hs-opal) or by infiltration of precursors into opal templates and inversion. The resulting lattice disturbances were characterized by scanning electron microscopy (SEM), optical microscopy, and transmission spectra. The hs-opal system shows much lower disturbances, for example, a lower number of cracks and lattice deformations. The strong suppression of crack formation in one of these inverse opal structures can be considered as promising candidates for the fabrication of more perfect photonic crystals.

6.
Nanoscale ; 15(29): 12270-12279, 2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37394982

RESUMEN

The plasmonic nanoparticle components assembled by certain methods have great application potential in single particle scattering and surface-enhanced Raman spectroscopy (SERS) detection. Gold nanorods (GNRs) are a type of promising plasmonic material for nanoparticle assembly due to their large, shape-induced local field enhancement and tunable surface plasmon resonances (SPRs). However, it is difficult to obtain the spectra of the anticipated bandwidth and shape, due to the coupling effect between the GNRs and the concentration of GNRs with different SPRs. In this paper, a superparticle assembly method with predictable spectral bandwidth and shape prepared by batch gradient descent (BGD) algorithm fitting and emulsion method is proposed. Specifically, broadband GNRs were obtained by mixing 6 types of GNRs, which the ratios were determined by a BGD algorithm. Then the superparticles were prepared by a method of oil-in-water emulsion with solvent evaporation, resulting in superparticles with broadband spectra from 700 nm to 1100 nm. The bandwidth and shape of the spectra could be tuned by changing the concentration of GNRs of different LSPRs. After removing the CTAB template of mesoporous silica, the assembled broadband superparticles can also measure SERS enhancement for the lipophilic dye molecule Nile red, which opens up a broad space for its sensing application.

7.
ACS Omega ; 6(13): 9188-9195, 2021 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-33842787

RESUMEN

Although gold nanorods capped with hexadecyltrimethylammonium bromide (CTAB) have been prepared through the seed-mediated method for their use in diagnostics and therapeutics, the toxicity of AuNRs@CTAB limits their practical applications in the biomedical field. In this work, the synthesis and tuning of gold nanorods at very low concentrations of CTAB (as low as 0.008 M) was successfully achieved by using the seed-mediated method. Furthermore, we managed to optimize the growth conditions by changing the amount of seeds, AgNO3, and/or HCl. At low CTAB concentrations, gold nanorods with tunable size and aspect ratio, high monodispersity, and high purity were obtained and studied by UV-vis spectroscopy, transmission electron microscopy, and Mie-Gans theoretical calculations. This work revealed a method of nanoparticle growth that may be extended to synthesize other nanomaterials such as Ag, Cu, Pd, and Pt at such low CTAB concentrations.

8.
RSC Adv ; 11(55): 34516-34524, 2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-35494784

RESUMEN

The plasmonic properties of noble metallic nanoparticles could be tuned by morphology and composition, enabling opportunities for applications in sensors, photocatalysis, biomedicine, and energy conversion. Here, we report a method of the symmetric and asymmetric overgrowth of a Ag shell onto gold nanorods assisted by Pt pre-deposition via a 2-step approach. Firstly, gold nanorods (AuNRs), synthesized via a seed-mediated method, were used as seeds to form a AuNR-Pt structure, by using K2PtCl4 as the precursor. In this step, most of the Pt material was selectively deposited on the tips of the AuNR. Secondly, by using AgNO3 as the precursor, a Ag shell was overgrown on the surface of the AuNRs-Pt nanoparticles, resulting in a (AuNR-Pt)-Ag core-shell tri-metallic nanostructure. Due to the surface energy and lattice matching between Au and Ag, the Ag shell preferred to be epitaxially overgrown on the side of AuNR. The Ag shell thickness and symmetry of the (AuNR-Pt)-Ag could be tuned by changing the amounts of AgNO3 precursor. With the increase of the Ag shell thickness, the (AuNR-Pt)-Ag nanostructures changed from symmetric to asymmetric. The obtained (AuNR-Pt)-Ag nanostructures were studied using UV-vis-NIR spectroscopy, transmission electron microscopy, EDS mapping, DLS, and ICP-MS. The growth mechanism was discussed.

9.
ACS Omega ; 6(10): 7034-7046, 2021 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-33748617

RESUMEN

Bimetallic nanorods are important colloidal nanoparticles for optical applications, sensing, and light-enhanced catalysis due to their versatile plasmonic properties. However, tuning the plasmonic resonances is challenging as it requires a simultaneous control over the particle shape, shell thickness, and morphology. Here, we show that we have full control over these parameters by performing metal overgrowth on gold nanorods within a mesoporous silica shell, resulting in Au-Ag, Au-Pd, and Au-Pt core-shell nanorods with precisely tunable plasmonic properties. The metal shell thickness was regulated via the precursor concentration and reaction time in the metal overgrowth. Control over the shell morphology was achieved via a thermal annealing, enabling a transition from rough nonepitaxial to smooth epitaxial Pd shells while retaining the anisotropic rod shape. The core-shell synthesis was successfully scaled up from micro- to milligrams, by controlling the kinetics of the metal overgrowth via the pH. By carefully tuning the structure, we optimized the plasmonic properties of the bimetallic core-shell nanorods for surface-enhanced Raman spectroscopy. The Raman signal was the most strongly enhanced by the Au core-Ag shell nanorods, which we explain using finite-difference time-domain calculations.

10.
Adv Mater ; 33(33): e2100972, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34247423

RESUMEN

Understanding light-matter interactions in nanomaterials is crucial for optoelectronic, photonic, and plasmonic applications. Specifically, metal nanoparticles (NPs) strongly interact with light and can undergo shape transformations, fragmentation and ablation upon (pulsed) laser excitation. Despite being vital for technological applications, experimental insight into the underlying atomistic processes is still lacking due to the complexity of such measurements. Herein, atomic resolution electron tomography is performed on the same mesoporous-silica-coated gold nanorod, before and after femtosecond laser irradiation, to assess the missing information. Combined with molecular dynamics (MD) simulations based on the experimentally determined 3D atomic-scale morphology, the complex atomistic rearrangements, causing shape deformations and defect generation, are unraveled. These rearrangements are simultaneously driven by surface diffusion, facet restructuring, and strain formation, and are influenced by subtleties in the atomic distribution at the surface.

11.
Nanoscale ; 9(8): 2845-2851, 2017 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-28169378

RESUMEN

Alloyed metal nanorods offer a unique combination of enhanced plasmonic and photothermal properties with a wide variety in optical and catalytic properties as a function of the alloy composition. Here, we show that fully alloyed anisotropic nanoparticles can be obtained with complete retention of the particle shape via thermal treatment at surprisingly low temperatures. By coating Au-Ag, Au-Pd and Au-Pt core-shell nanorods with a protective mesoporous silica shell the transformation of the rods to a more stable spherical shape was successfully prevented during alloying. For the Au-Ag core-shell NRs the chemical stability was drastically increased after alloying, and from Mie-Gans and finite-difference time-domain (FDTD) calculations it followed that alloyed AuAg rods also exhibit much better plasmonic properties than their spherical counterparts. Finally, the generality of our method is demonstrated by alloying Au-Pd and Au-Pt core-shell NRs, whereby the AuPd and AuPt alloyed NRs showed a surprisingly high increase in thermal stability of several hundred degrees compared with monometallic silica coated Au NRs.

12.
J Colloid Interface Sci ; 329(2): 292-9, 2009 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-18922544

RESUMEN

An effective and reproducible method of preparing highly monodisperse organic-inorganic hybrid silica spheres was studied. One process, one precursor (organosilane) and one solvent (water) were used in our experiments. The size of hybrid silica spheres could be adjusted from 360 to 770 nm with relative standard deviation below 2% by controlling the concentration of the organosilane precursor and the ammonia catalyst. The increasing of the precursor concentration increases the particle size while the catalyst concentration has a reverse effect on the particle size. The concept of homogeneous nucleation and growth processes are introduced to explain the formation mechanism and the effect of reaction conditions. The scanning electron microscopy (SEM) images illustrate the copiousness in quantity and the uniformity in size/shape of the particles that could be routinely accomplished in this synthesis. Fourier transform infrared (FT-IR) and (29)Si nuclear magnetic resonance (NMR) spectra confirm the structure of vinyl hybrid silica spheres, where the vinyl group (-CH=CH(2)) exists and connects to the silicon atom. This method has also been extended to design and prepare other organic-inorganic hybrid materials especially in monodisperse surface-modified silica spheres.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA