Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Chemistry ; 30(17): e202303711, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38143240

RESUMEN

Carbon dioxide electroreduction reaction (CO2RR) can take full advantage of sustainable power to reduce the continuously increasing carbon emissions. Recycling CO2 to produce formic acid or formate is a technologically and economically viable route to accomplish CO2 cyclic utilization. Developing efficient and cost-effective electrocatalysts with high selectivity towards formate is prioritized for the industrialized applications of CO2RR electrolysis. From the previous explored CO2RR catalysts, Sn, Bi and In based materials have drawn increasing attentions due to the high selectivity towards formate. However, there are still confronted with several challenges for the practical applications of these materials. Therefore, a rational design of the catalysts for formate is urgently needed for the target of industrialized applications. Herein, we comprehensively summarized the recent development in the advanced electrocatalysts for the CO2RR to formate. Firstly, the reaction mechanism of CO2RR is introduced. Then the preparation and design strategies of the highly active electrocatalysts are presented. Especially the innovative design mechanism in engineering materials for promoting catalytic performance, and the efforts on mechanistic exploration using in situ (ex situ) characterization techniques are reviewed. Subsequently, some perspectives and expectations are proposed about current challenges and future potentials in CO2RR research.

2.
Chem Rev ; 122(23): 17155-17239, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36239919

RESUMEN

The ever-increasing demand for flexible and portable electronics has stimulated research and development in building advanced electrochemical energy devices which are lightweight, ultrathin, small in size, bendable, foldable, knittable, wearable, and/or stretchable. In such flexible and portable devices, semi-solid/solid electrolytes besides anodes and cathodes are the necessary components determining the energy/power performances. By serving as the ion transport channels, such semi-solid/solid electrolytes may be beneficial to resolving the issues of leakage, electrode corrosion, and metal electrode dendrite growth. In this paper, the fundamentals of semi-solid/solid electrolytes (e.g., chemical composition, ionic conductivity, electrochemical window, mechanical strength, thermal stability, and other attractive features), the electrode-electrolyte interfacial properties, and their relationships with the performance of various energy devices (e.g., supercapacitors, secondary ion batteries, metal-sulfur batteries, and metal-air batteries) are comprehensively reviewed in terms of materials synthesis and/or characterization, functional mechanisms, and device assembling for performance validation. The most recent advancements in improving the performance of electrochemical energy devices are summarized with focuses on analyzing the existing technical challenges (e.g., solid electrolyte interphase formation, metal electrode dendrite growth, polysulfide shuttle issue, electrolyte instability in half-open battery structure) and the strategies for overcoming these challenges through modification of semi-solid/solid electrolyte materials. Several possible directions for future research and development are proposed for going beyond existing technological bottlenecks and achieving desirable flexible and portable electrochemical energy devices to fulfill their practical applications. It is expected that this review may provide the readers with a comprehensive cross-technology understanding of the semi-solid/solid electrolytes for facilitating their current and future researches on the flexible and portable electrochemical energy devices.


Asunto(s)
Suministros de Energía Eléctrica , Electrólitos , Electrodos , Electrónica , Programas Informáticos
3.
Angew Chem Int Ed Engl ; 63(9): e202316640, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38146810

RESUMEN

The catalyst-reconstruction makes it challenging to clarify the practical active sites and unveil the actual reaction mechanism during the CO2 electroreduction reaction (CO2 RR). However, currently the impact of the electrolyte microenvironment in which the electrolyte is in contact with the catalyst is overlooked and might induce a chemical evolution, thus confusing the reconstruction process and mechanism. In this work, the carbonate adsorption properties of metal oxides were investigated, and the mechanism of how the electrolyte carbonate affect the chemical evolution of catalysts were discussed. Notably, Bi2 O3 with weak carbonate adsorption underwent a chemical reconstruction to form the Bi2 O2 CO3 /Bi2 O3 heterostructure. Furthermore, in situ and ex situ characterizations unveiled the formation mechanism of the heterostructure. The in situ formed Bi2 O2 CO3 /Bi2 O3 heterostructure with strong electron interaction served as the highly active structure for CO2 RR, achieving a formate Faradaic efficiency of 98.1 % at -0.8 Vvs RHE . Theoretical calculations demonstrate that the significantly tuned p-orbit electrons of the Bi sites in Bi2 O2 CO3 /Bi2 O3 optimized the adsorption of the intermediate and lowered the energy barrier for the formation of *OCHO. This work elucidates the mechanism of electrolyte microenvironment for affecting catalyst reconstruction, which contributes to the understanding of reconstruction process and clarification of the actual catalytic structure.

4.
J Am Chem Soc ; 145(3): 1924-1935, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36571792

RESUMEN

High-entropy compounds with extraordinary properties due to the synergistic effect of multiple components have exhibited great potential and attracted extensive attention in various fields, including physics, mechanical property analysis, and energy storage. Achieving universal stability and synthesis of high-entropy compounds with a wide range of components and structures continues to be difficult due to the high complexity of multicomponent mixing. Here, we propose a design strategy with high generality for realizing the stability and synthesis of high-entropy compounds that one metal site like the framework in the compound structures with bimetallic sites stabilizes another site to accommodate different elements. Several typical metal compounds with bimetallic sites, including perovskite hydroxides, layered double hydroxide, spinel sulfide, perovskite fluoride, and spinel oxides, have been synthesized into high-entropy compounds. High-entropy perovskite hydroxides (HEPHs) as representative compounds have been synthesized with a highly wide range of components even a septenary component and exhibit great oxygen evolution activity. Our work provides a design platform to develop more high-entropy compound systems with promising development potential for electrocatalysts.

5.
Phys Chem Chem Phys ; 25(5): 4113-4120, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36651810

RESUMEN

The recent development of some special oxygen evolution reaction (OER) electrocatalysts shows that the lattice oxygen could participate in the catalysis process via the lattice oxygen oxidation mechanism (LOM), which the provides good possibility of exploring advanced electrocatalysts that could overcome the scaling relationship in conventional catalysis processes through a traditional adsorbate evolution mechanism. In this work, we theoretically predict that, benefiting from the unhybridized O-Li orbitals and the resulting metastable Li-O-Li ligands, the lattice oxygen could be easily activated and oxidized at relatively high oxidation voltages. Thus, lithium-excess disordered rocksalts (DRX) should possess the potential for acting as active OER electrocatalysts, which catalyze through the LOM pathway. The isotope labelling experimental results show that the lattice oxygen in the DRX was activated and participated in the OER process through the LOM pathway. The typical DRX of Li1.2Fe0.4Ti0.5O2 displays obviously pH-dependent OER activity under the LOM process and shows a low overpotential of 263 mV to reach 10 mA cm-2 with long-term stability for 100 hours. The turnover frequency of Li1.2Fe0.4Ti0.5O2 is nearly 9 times that of LiFePO4 at the overpotential of 300 mV. This work opens a new chemical space for exploring efficient electrocatalysts to enhance the OER performance through the LOM pathway.

6.
Nano Lett ; 22(16): 6492-6500, 2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-35950973

RESUMEN

High-entropy oxide (HEO) including multiple principal elements possesses great potential for various fields such as basic physics, mechanical properties, energy storage, and catalysis. However, the synthesis method of high-entropy compounds through the traditional heating approach is not conducive to the rapid properties screening, and the current elemental combinations of HEO are also highly limited. Herein, we report a rapid synthesis method for HEO through the Joule-heating of nickel foil with dozens of seconds. High-entropy rocksalt oxides (HERSO) with the new elemental combination, high-entropy spinel oxides (HESO), and high-entropy perovskite oxide (HEPO) have been synthesized through the Joule-heating. The synthesized HERSO with new elemental combinations proves to be a great promotion of OER activity due to the synergy of multiple components and the continuous electronic structure experimentally and theoretically. The demonstrated synthesis approach and the new component combination of HERSO provide a broad platform for the development of high-entropy materials and catalysts.

7.
Angew Chem Int Ed Engl ; 62(6): e202215256, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36461715

RESUMEN

It is vitally important to develop highly active, robust and low-cost transition metal-based electrocatalysts for overall water splitting in neutral solution especially at large current density. In this work, amorphous Mo-doped NiS0.5 Se0.5 nanosheets@crystalline NiS0.5 Se0.5 nanorods (Am-Mo-NiS0.5 Se0.5 ) was synthesized using a facil one-step strategy. In phosphate buffer saline solution, the Am-Mo-NiS0.5 Se0.5 shows tiny overpotentials of 48 and 209 mV for hydrogen evolution reaction (HER), 238 and 514 mV for oxygen evolution reaction (OER) at 10 and 1000 mA cm-2 , respectively. Moreover, Am-Mo-NiS0.5 Se0.5 delivers excellent stability for at least 300 h without obvious degradation. Theoretical calculations revealed that the Ni sites in the defect-rich amorphous structure of Am-Mo-NiS0.5 Se0.5 owns higher electron state density and strengthened the binding energy of H2 O, which will optimize H adsorption/desorption energy barriers and reduce the adsorption energy of OER determining step.

8.
Angew Chem Int Ed Engl ; 62(24): e202302689, 2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-36967232

RESUMEN

The sluggish kinetics and mutual interference of oxygen evolution and reduction reactions in the air electrode resulted in large charge/discharge overpotential and low energy efficiency of Zn-air batteries. In this work, we designed a breathing air-electrode configuration in the battery using P-type Ca3 Co4 O9 and N-type CaMnO3 as charge and discharge thermoelectrocatalysts, respectively. The Seebeck voltages generated from thermoelectric effect of Ca3 Co4 O9 and CaMnO3 synergistically compensated the charge and discharge overpotentials. The carrier migration and accumulation on the cold surface of Ca3 Co4 O9 and CaMnO3 optimized the electronic structure of metallic sites and thus enhanced their intrinsic catalytic activity. The oxygen evolution and reduction overpotentials were enhanced by 101 and 90 mV, respectively, at temperature gradient of 200 °C. The breathing Zn-air battery displayed a remarkable energy efficiency of 68.1 %. This work provides an efficient avenue towards utilizing waste heat for improving the energy efficiency of Zn-air battery.

9.
Small ; 18(43): e2106904, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35187802

RESUMEN

Development of efficient non-noble metal catalysts for water splitting is of great significance but challenging due to the sluggish kinetics of the hydrogen evolution reaction (HER) in alkaline medium. Herein, a bimetallic multi-level layered catalytic electrode composed of Ni3 S2 nanosheets with secondary Co-NiOOH layer of 3D porous and free-standing cathode in alkaline medium is reported. This integrated synergistic catalytic electrode exhibits excellent HER electrocatalytic performance. The resultant Ni0.67 Co0.33 /Ni3 S2 @NF electrode displays the highest HER activity with only overpotentials of 87 and 203 mV to afford current densities of 10 and 100 mA·cm-2 , respectively, and its Tafel slope is 80 mV·dec-1 . The chronopotentiometry operated at high current density of 50 mA·cm-2 shows negligible deterioration, indicating better stability of Ni0.67 Co0.33 /Ni3 S2 @NF electrode than Pt/C (20 wt.%). Such a desirable catalytic performance is attributed to the modification of physical and electronic structure that exposes abundant active sites and improves the intrinsic catalytic activity toward HER, which is also confirmed by electrochemically active surface area and X-ray photoelectron spectroscopy analysis. This work provides a strong support for the rational design of high-performance bimetallic electrodes for industrial water splitting.

10.
Angew Chem Int Ed Engl ; 61(3): e202114441, 2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-34806271

RESUMEN

Owing to their unique electronic structure and maximum atom utilization efficiency, single-atom catalysts have received widespread attention and exhibited efficient activity. Herein, we report the preparation of non-metal Se single atoms embedded in nitrogen-doped carbon (NC) via a high-temperature reduction strategy for electrocatalytic oxygen reduction reaction (ORR). Selenium dioxide is reduced to selenium by NC at high temperature and partially anchored to form C-Se-C bond. Impressively, the obtained single-atom catalyst exhibits outstanding ORR activity and stability that even surpasses state-of-the-art noble metal catalysts and many previously reported nanocatalysts. Experimental and theoretical calculations reveal that the Se single atoms can serve as the ORR active sites and contribute to lowering the reaction barrier. Our discoveries demonstrate the promising prospects for utilizing metal-free single-atom-based materials for efficient electrocatalysis.

11.
Angew Chem Int Ed Engl ; 60(14): 7602-7606, 2021 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-33393128

RESUMEN

Tuning the electronic states near the Fermi level can effectively facilitate the reaction kinetics. However, elucidating the role of a specific electronic state of metal oxide in simultaneously regulating the CO2 electroreduction reaction (CO2 RR) and competing hydrogen evolution reaction (HER) is still rare, making it difficult to accurately predict the practical CO2 RR performance. Herein, replacing the Zn site by heteroatoms with different outer electrons (Mo and Cu) is found to tune both occupied and unoccupied orbitals near the Fermi level of ZnO. Moreover, the different electronic states significantly modulate both CO2 RR and HER activity with a totally inverse trend, thus dramatically tuning the practical CO2 RR performance. In parallel, the correlation between electronic states, reaction free energies and practical activity is demonstrated. This work provides a possibility for engineering efficient CO2 RR eletrocatalysts through tunable composition and electronic structures.

12.
Small ; 16(4): e1904964, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31867858

RESUMEN

The development of new type electrocatalysts with promising activity and antipoisoning ability is of great importance for electrocatalysis on alcohol oxidation. In this work, Pd nanowire (PdNW)/CuOx heterogeneous catalysts with different types of PdOCu interfaces (Pd/amorphous or crystalline CuOx ) are prepared via a two-step hydrothermal strategy followed by an air plasma treatment. Their interface-dependent performance on methanol and ethanol oxidation reaction (MOR and EOR) is clearly observed. The as-prepared PdNW/crystalline CuOx catalyst with 17.2 at% of Cu on the PdNW surface exhibits better MOR and EOR activity and stability, compared with that of PdNW/amorphous CuOx and pristine PdNW catalysts. Significantly, both the cycling tests and the chronoamperometric measurements reveal that the PdNW/crystalline CuOx catalyst yields excellent tolerance toward the possible intermediates including formaldehyde, formic acid, potassium carbonate, and carbon monoxide generated during the MOR process. The detailed analysis of their chemical state reveals that the enhanced activity and antipoison ability of the PdNW/crystalline CuOx catalyst originates from the electron-deficient Pdδ+ active sites which gradually turn into Pd5 O4 species during the MOR catalysis. The Pd5 O4 species can likely be stabilized by moderate crystalline CuOx decorated on the surface of PdNW due to the strong PdOCu interaction.

13.
Small ; 16(37): e2002856, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32797720

RESUMEN

A highly electrically conductive film-type current collector is an essential part of batteries. Apart from the metal-based current collectors, lightweight and highly conductive carbon materials such as reduced graphene oxide (RGO) and carbon nanotubes (CNTs) show great potential as current collectors. However, traditional RGO manufacturing usually requires a long time and high energy, which decreases the product yielding rate and manufacturing efficiency. Moreover, the performance of the manufactured RGO needs to be further improved. In this work, CNT and GO are evenly mixed into GO-CNT, which can be directly reduced into RGO-CNT by Joule heating at 2936 K within less than 1 min. The fabricated RGO-CNT achieves a high electrical conductivity of 2750 S cm-1 , and realizes a 106 -fold increase. The assembled flexible aqueous Al-ion battery with RGO-CNT as the current collector exhibits impressive electrochemical performance in terms of superior cycling stability and exceptional rate capability, and excellent mechanical ability regarding the tolerance to mechanical damage such as bending, folding, piercing, and cutting without detrimental consequences.

14.
Chemistry ; 26(18): 4097-4103, 2020 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-31657056

RESUMEN

The development of high-efficiency, low-cost, and earth-abundant electrocatalysts for overall water splitting remains a challenge. In this work, Ni-modified MoS2 hybrid catalysts are grown on carbon cloth (Ni-Mo-S@CC) through a one-step hydrothermal treatment. The optimized Ni-Mo-S@CC catalyst shows excellent hydrogen evolution reaction (HER) activity with a low overpotential of 168 mV at a current density of 10 mA cm-2 in 1.0 m KOH, which is lower than those of Ni-Mo-S@CC (1:1), Ni-Mo-S@CC (3:1), and pure MoS2 . Significantly, the Ni-Mo-S@CC hybrid catalyst also displays outstanding oxygen evolution reaction (OER) activity with a low overpotential of 320 mV at a current density of 10 mA cm-2 , and remarkable long-term stability for 30 h at a constant current density of 10 mA cm-2 . Experimental results and theoretical analysis based on density functional theory demonstrate that the excellent electrocatalytic performance can be attributed mainly to the remarkable conductivity, abundant active sites, and synergistic effect of the Ni-doped MoS2 . This work sheds light on a unique strategy for the design of high-performance and stable electrocatalysts for water-splitting electrolyzers.

15.
Angew Chem Int Ed Engl ; 59(18): 7245-7250, 2020 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-32077180

RESUMEN

The fabrication of metal-supported hybrid structures with enhanced properties typically requires external energy input, such as pyrolysis, photolysis, and electrodeposition. In this study, silver-nanoparticle-decorated transition-metal hydroxide (TMH) composites were synthesized by an approach based on a spontaneous redox reaction (SRR) at room temperature. The SRR between silver ions and TMH provides a simple and facile route to establish effective and stable heterostructures that can enhance the oxygen evolution reaction (OER) activity. Ag@Co(OH)x grown on carbon cloth exhibits outstanding OER activity and durability, even superior to IrO2 and many previously reported OER electrocatalysts. Experimental and theoretical analysis demonstrates that the strong electronic interaction between Ag and Co(OH)2 activates the silver clusters as catalytically OER active sites, effectively optimizing the binding energies with reacted intermediates and facilitating the OER kinetics.

16.
Angew Chem Int Ed Engl ; 59(42): 18463-18467, 2020 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-32533640

RESUMEN

Cu2 O is a typical photoelectrocatalyst for sustainable hydrogen production, while the fast charge recombination hinders its further development. Herein, Ni2+ cations have been doped into a Cu2 O lattice (named as Ni-Cu2 O) by a simple hydrothermal method and act as electron traps. Theoretical results predict that the Ni dopants produce an acceptor impurity level and lower the energy barrier of hydrogen evolution. Photoelectrochemical (PEC) measurements demonstrate that Ni-Cu2 O exhibits a photocurrent density of 0.83 mA cm-2 , which is 1.34 times higher than that of Cu2 O. And the photostability has been enhanced by 7.81 times. Moreover, characterizations confirm the enhanced light-harvesting, facilitated charge separation and transfer, prolonged charge lifetime, and increased carrier concentration of Ni-Cu2 O. This work provides deep insight into how acceptor-doping modifies the electronic structure and optimizes the PEC process.

17.
Angew Chem Int Ed Engl ; 59(13): 5092-5101, 2020 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-31886942

RESUMEN

Developing superior electrocatalysts for formic acid oxidation (FAO) is the most crucial step in commercializing direct formic acid fuel cells. Herein, we electrodeposited palladium membranes with periodically ordered mesoporosity obtained by asymmetrically replicating the bicontinuous cubic phase structure of a lyotropic liquid-crystal template. The Pd membrane with the largest periodicity and highest degree of order delivered up to 90.5 m2 g-1 of electrochemical active surface area and 3.34 A mg-1 electrocatalysis capability towards FAO, 3.8 and 7.8 times the values of the commercial Pd/C catalyst, respectively. By controlling the temperature and potential of the electrodeposition procedure, the periodicity area and order degree of the mesoporosity are highly tunable. These Pd membranes gave prototype formic acid fueled cells with 4.3 and 2.4 times the maximum current and power density of the commercial Pd/C catalyst.

18.
Angew Chem Int Ed Engl ; 58(16): 5359-5364, 2019 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-30790406

RESUMEN

The size effect of transition-metal nanoparticles on electrocatalytic performance remains ambiguous especially when decreasing the size to the atomic level. Herein, we report the spatial isolation of cobalt species on the atomic scale, which was achieved by tuning the zinc dopant content in predesigned bimetallic Zn/Co zeolitic imidazole frameworks (ZnCo-ZIFs), and led to the synthesis of nanoparticles, atomic clusters, and single atoms of Co catalysts on N-doped porous carbon. This synthetic strategy allowed an investigation of the size effect on electrochemical behavior from nanometer to Ångström dimensions. Single-atom Co catalysts showed superior bifunctional ORR/OER activity, durability, and reversibility in Zn-air batteries compared with the other derivatives and noble-metal Pt/C+RuO2 , which was attributed to the high reactivity and stability of isolated single Co atoms. Our findings open up a new avenue to regulate the metal particle size and catalytic performance of MOF derivatives.

19.
Small ; 14(50): e1803666, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30307691

RESUMEN

Exploiting economical and high-performance bifunctional electrocatalysts toward hydrogen and oxygen evolution reactions (HER/OER) is at the heart of overall water splitting in large-scale application. Herein, an in situ and stepwise strategy for synthesizing core-shell Ni3 (S1-x Sex )2 @NiOOH (0 ≤ x ≤ 1) nanoarray heterostructures on nickel foam with tailored compositions for enhancing water-splitting performance is reported. A series of Ni3 (S1-x Sex )2 nanostructures is firstly grown on nickel foam via an in situ reaction in a heated polyol solution system. Ni3 (S1-x Sex )2 @NiOOH nanocomposites are subsequently prepared via electrochemical oxidation and the oxidation degree is systematically investigated by varying the oxidation time. Benefitting from the vertical standing architecture, abundant exposed active sites, and synergetically interfacial enhancement, Ni3 (S0.25 Se0.75 )2 @NiOOH heterojunctions with electrochemical polarization for 8 h exhibit superior HER and OER behaviors, achieving a water-splitting current density of 10 mA cm-2 at a small overpotential of 320 mV as well as boosted reaction kinetics and long-term stability. This work should shed light on the controllable synthesis of metal-based hybrid materials and provide a promising direction for developing the highest-performing electrocatalysts based on interfacial and heterostructural regulation for advanced electrochemical energy conversion technologies.

20.
Small ; 14(43): e1702987, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29388366

RESUMEN

Flexible, wearable, and portable energy storage devices with high-energy density are crucial for next-generation electronics. However, the current battery technologies such as lithium ion batteries have limited theoretical energy density. Additionally, battery materials with small scale and high flexibility which could endure the large surface stress are highly required. In this study, a yarn-based 1D Zn-air battery is designed, which employs atomic layer thin Co3 O4 nanosheets as the oxygen reduction reaction/oxygen evolution reaction catalyst. The ultrathin nanosheets are synthesized by a high-yield and facile chemical method and show a thickness of only 1.6 nm, corresponding to few atomic layers. The 1D Zn-air battery shows high cycling stability and high rate capability. The battery is successfully knitted into clothes and it shows high stability during the large deformation and knotting conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA