Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Labelled Comp Radiopharm ; 59(4): 171-4, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26923297

RESUMEN

Technetium-99m aprotinin was prepared from an optimised radiolabelling kit formulation containing aprotinin, alkaline buffer and stannous chloride (reducing agent) and radiolabelled using (99m) Tc-pertechnetate. The labelling was achieved within 25 min, with radiochemical purities of >98%.


Asunto(s)
Amiloidosis/diagnóstico por imagen , Aprotinina/química , Diagnóstico por Imagen , Marcaje Isotópico/métodos , Tecnecio/química , Radioquímica
2.
J Nucl Med ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38960713

RESUMEN

Meta-[123I]iodobenzylguanidine ([123I]MIBG) scintigraphy with SPECT/CT is the standard of care for diagnosing and monitoring neuroblastoma. Replacing [123I]MIBG with the new PET tracer meta-[18F]fluorobenzylguanidine ([18F]MFBG) and further improving sensitivity and reducing noise in a new long-axial-field-of-view (LAFOV) PET/CT scanner enable increased image quality and a faster acquisition time, allowing examinations to be performed without sedation or general anesthesia (GA). Focusing on feasibility, we present our first experience with [18F]MFBG LAFOV PET/CT and compare it with [123I]MIBG scintigraphy plus SPECT/CT for imaging in neuroblastoma in children. Methods: A pilot of our prospective, single-center study recruited children with neuroblastoma who were referred for [123I]MIBG scintigraphy with SPECT/CT. Within 1 wk of [123I]MIBG scintigraphy and SPECT/low-dose CT, [18F]MFBG LAFOV PET/ultra-low-dose CT was performed 1 h after injection (1.5-3 MBq/kg) without sedation or GA, in contrast to the 24-h postinjection interval needed for scanning with [123I]MIBG, the 2- to 2.5-h acquisition time, and the GA often needed in children less than 6 y old. Based on the spirocyclic iodonium-ylide precursor, [18F]MFBG was produced in a fully automated good manufacturing practice-compliant procedure. We present the feasibility of the study. Results: In the first paired scans of the first 10 children included (5 at diagnosis, 2 during treatment, 2 during surveillance, and 1 at relapse), [18F]MFBG PET/CT scan showed a higher number of radiotracer-avid lesions in 80% of the cases and an equal number of lesions in 20% of the cases. The SIOPEN score was higher in 50% of the cases, and the Curie score was higher in 70% of the cases. In particular, intraspinal, retroperitoneal lymph node, and bone marrow involvement was diagnosed with much higher precision. None of the children (median age, 1.6 y; range, 0.1-7.9 y) had sedation or GA during the PET procedure, whereas 80% had GA during [123I]MIBG scintigraphy with SPECT/CT. A PET acquisition time of only 2 min without motion artifacts was the data requirement of the 10-min acquisition time for reconstruction to provide a clinically useful image. Conclusion: This pilot study demonstrates the feasibility of performing [18F]MFBG LAFOV PET/CT for imaging of neuroblastoma. Further, an increased number of radiotracer-avid lesions, an increased SIOPEN score, and an increased Curie score were seen on [18F]MFBG LAFOV PET/CT compared with [123I]MIBG scintigraphy with SPECT/CT, and GA and sedation was avoided in all patients. Thus, with a 1-d protocol, a significantly shorter scan time, a higher sensitivity, and the avoidance of GA and sedation, [18F]MFBG LAFOV PET/CT shows promise for future staging and response assessment and may also have a clinical impact on therapeutic decision-making for children with neuroblastoma.

3.
EJNMMI Res ; 12(1): 56, 2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36070114

RESUMEN

BACKGROUND: Dopamine transporter (DAT) imaging of striatum is clinically used in Parkinson's disease (PD) and neurodegenerative parkinsonian syndromes (PS) especially in the early disease stages. The aim of the present study was to evaluate the diagnostic performance of the recently developed tracer for DAT imaging [18F]FE-PE2I PET/CT to the reference standard [123I]FP-CIT SPECT. METHODS: Ninety-eight unselected patients referred for DAT imaging were included prospectively and consecutively and evaluated with [18F]FE-PE2I PET/CT and [123I]FP-CIT SPECT on two separate days. PET and SPECT scans were categorized independently by two blinded expert readers as either normal, vascular changes, or mixed. Semiquantitative values were obtained for each modality and compared regarding effect size using Glass' delta. RESULTS: Fifty-six of the [123I]FP-CIT SPECT scans were considered abnormal (52 caused by PS, 4 by infarctions). Using [18F]FE-PE2I PET/CT, 95 of the 98 patients were categorized identically to SPECT as PS or non-PS with a sensitivity of 0.94 [0.84-0.99] and a specificity of 1.00 [0.92-1.00]. Inter-reader agreement for [18F]FE-PE2I PET with a kappa of 0.97 [0.89-1.00] was comparable to the agreement for [123I]FP-CIT SPECT of 0.96 [0.76-1.00]. Semiquantitative values for short 10-min reconstructions of [18F]FE-PE2I PET/CT were comparable to longer reconstructions. The effect size for putamen/caudate nucleus ratio was significantly increased using PET compared to SPECT. CONCLUSIONS: The high correspondence of [18F]FE-PE2I PET compared to reference standard [123I]FP-CIT SPECT establishes [18F]FE-PE2I PET as a feasible PET tracer for clinical use with favourable scan logistics.

4.
Pharmaceuticals (Basel) ; 14(7)2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34206688

RESUMEN

In the struggle to understand and accurately diagnose Parkinson's disease, radiopharmaceuticals and medical imaging techniques have played a major role. By being able to image and quantify the dopamine transporter density, noninvasive diagnostic imaging has become the gold standard. In the shift from the first generation of SPECT tracers, the fluorine-18-labeled tracer [18F]FE-PE2I has emerged as the agent of choice for many physicians. However, implementing suitable synthesis for the production of [18F]FE-PE2I has proved more challenging than expected. Through a thorough analysis of the relevant factors affecting the final radiochemical yield, we were able to implement high-yielding fully automated GMP-compliant synthesis of [18F]FE-PE2I on a Synthera®+ platform. By reaching RCYs up to 62%, it allowed us to isolate 25 GBq of the formulated product, and an optimized formulation resulted in the shelf life of 6 h, satisfying the increased demand for this radiopharmaceutical.

6.
Nucl Med Biol ; 38(4): 509-15, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21531288

RESUMEN

INTRODUCTION: This study describes the radiosynthesis, in vitro and in vivo evaluation of the novel small peptide radioligand, 4-[(18)F]fluorobenzoyl-Phe-Ala-Leu-Gly-Glu-Ala-NH(2,) ([(18)F]FBA-FALGEA-NH(2)) as a positron emission tomography (PET) tracer for imaging of the cancer specific epidermal growth factor receptor (EGFR) variant III mutation, EGFRvIII. METHODS: For affinity, stability and PET measurements, H-FALGEA-NH(2) was radiolabelled using 4-[(18)F]fluorobenzoic acid ([(18)F]FBA). The binding affinity of ([(18)F]FBA)-FALGEA-NH(2) was measured on EGFRvIII expressing cells, NR6M. Stability studies in vitro and in vivo were carried out in blood plasma from nude mice. PET investigations of [(18)F]FBA-FALGEA-NH(2) were performed on a MicroPET scanner, using seven nude mice xenografted subcutaneously with human glioblastoma multiforme (GBM) tumours, expressing the EGFRvIII in its native form, and five nude mice xenografted subcutaneously with GBM tumours lacking EGFRvIII expression. Images of [(18)F]FDG were also obtained for comparison. The mice were injected with 5-10 MBq of the radiolabelled peptide or [(18)F]FDG. Furthermore, the gene expression of EGFRvIII in the tumours was determined using quantitative real-time PCR. RESULTS: Radiolabelling and purification was achieved within 180 min, with overall radiochemical yields of 2.6-9.8% (decay-corrected) and an average specific radioactivity of 6.4 GBq/µmol. The binding affinity (K(d)) of [(18)F]FBA-FALGEA-NH(2) to EGFRvIII expressing cells was determined to be 23 nM. The radiolabelled peptide was moderately stable in the plasma from nude mice where 53% of the peptide was intact after 60 min of incubation in plasma but rapidly degraded in vivo, where no intact peptide was observed in plasma 5 min post-injection. The PET imaging showed that [(18)F]FBA-FALGEA-NH(2) accumulated preferentially in the human GBM xenografts which expressed high amounts of the mutated receptor. The average tumour-to-muscle ratio (T/M) in the EGFRvIII tumours was 7.8 at 60 min post-injection, compared with 4.6 in the wild-type EGFR tumours. Furthermore, there was a strong correlation (R=0.86, P=.007) between the expression of EGFRvIII in the tumours and the tracer uptake expressed as T/M. CONCLUSION: Our results indicate that, despite its rapid metabolism, [(18)F]FBA-FALGEA-NH(2) binds preferentially to EGFRvIII in the tumours in vivo and is a promising lead for further development of EGFRvIII specific peptide radiopharmaceuticals.


Asunto(s)
Receptores ErbB/genética , Glioblastoma/diagnóstico por imagen , Glioblastoma/genética , Mutación , Oligopéptidos , Tomografía de Emisión de Positrones/métodos , Animales , Benzoatos/química , Transporte Biológico , Transformación Celular Neoplásica , Estabilidad de Medicamentos , Receptores ErbB/metabolismo , Fluorodesoxiglucosa F18 , Regulación Neoplásica de la Expresión Génica , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Ratones , Oligopéptidos/síntesis química , Oligopéptidos/metabolismo , Trazadores Radiactivos
7.
Biopolymers ; 91(3): 201-6, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19107925

RESUMEN

We report here, the design and synthesis of a positional scanning synthetic combinatorial library for the identification of novel peptide ligands targeted against the cancer-specific epidermal growth factor tyrosine kinase receptor mutation variant III (EGFRvIII). This receptor is expressed in several kinds of cancer, in particular, ovarian, glioblastomas, and breast cancer, but not in normal tissue. The library consisted of six individual positional sublibraries in the format, H-O(1-6)XXXXX-NH(2), O being one of the 19 proteinogenic amino acids (cysteine omitted) and X an equimolar mixture of these. The library consisted of 114 mixtures in total. Using a biotin-streptavidin assay, the binding of each sublibrary to NR6M, NR6W-A, and NR6 cells was tested. These cells express EGFRvIII, EGFR, and neither of the receptors, respectively. The result from each sublibrary was examined to identify the most active amino acid residue at each position. On the basis of this knowledge, eight peptides were synthesized and tested for binding to EGFRvIII. We identified one peptide, H-FALGEA-NH(2), that showed more selective binding to the mutated receptor than the EGFRvIII specific peptide PEPHC1. This study demonstrates the value of using mixture-based combinatorial positional scanning libraries for the identification of novel peptide ligands targeted against the cancer-specific EGFRvIII. Our best candidate H-FALGEA-NH(2) will be radioactively labeled and evaluated as an imaging agent for positron emission tomography investigation for diagnosis, staging, and monitoring of therapy of various types of cancer.


Asunto(s)
Técnicas Químicas Combinatorias/métodos , Receptores ErbB/metabolismo , Proteínas Mutantes/metabolismo , Neoplasias/enzimología , Neoplasias/genética , Péptidos/análisis , Péptidos/metabolismo , Animales , Línea Celular , Receptores ErbB/genética , Ligandos , Ratones , Proteínas Mutantes/genética , Mutación/genética , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA