Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Nature ; 592(7852): 86-92, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33473216

RESUMEN

The anatomy of the mammalian visual system, from the retina to the neocortex, is organized hierarchically1. However, direct observation of cellular-level functional interactions across this hierarchy is lacking due to the challenge of simultaneously recording activity across numerous regions. Here we describe a large, open dataset-part of the Allen Brain Observatory2-that surveys spiking from tens of thousands of units in six cortical and two thalamic regions in the brains of mice responding to a battery of visual stimuli. Using cross-correlation analysis, we reveal that the organization of inter-area functional connectivity during visual stimulation mirrors the anatomical hierarchy from the Allen Mouse Brain Connectivity Atlas3. We find that four classical hierarchical measures-response latency, receptive-field size, phase-locking to drifting gratings and response decay timescale-are all correlated with the hierarchy. Moreover, recordings obtained during a visual task reveal that the correlation between neural activity and behavioural choice also increases along the hierarchy. Our study provides a foundation for understanding coding and signal propagation across hierarchically organized cortical and thalamic visual areas.


Asunto(s)
Potenciales de Acción/fisiología , Corteza Visual/anatomía & histología , Corteza Visual/fisiología , Animales , Conjuntos de Datos como Asunto , Electrofisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Estimulación Luminosa , Tálamo/anatomía & histología , Tálamo/citología , Tálamo/fisiología , Corteza Visual/citología
2.
Nature ; 551(7679): 232-236, 2017 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-29120427

RESUMEN

Sensory, motor and cognitive operations involve the coordinated action of large neuronal populations across multiple brain regions in both superficial and deep structures. Existing extracellular probes record neural activity with excellent spatial and temporal (sub-millisecond) resolution, but from only a few dozen neurons per shank. Optical Ca2+ imaging offers more coverage but lacks the temporal resolution needed to distinguish individual spikes reliably and does not measure local field potentials. Until now, no technology compatible with use in unrestrained animals has combined high spatiotemporal resolution with large volume coverage. Here we design, fabricate and test a new silicon probe known as Neuropixels to meet this need. Each probe has 384 recording channels that can programmably address 960 complementary metal-oxide-semiconductor (CMOS) processing-compatible low-impedance TiN sites that tile a single 10-mm long, 70 × 20-µm cross-section shank. The 6 × 9-mm probe base is fabricated with the shank on a single chip. Voltage signals are filtered, amplified, multiplexed and digitized on the base, allowing the direct transmission of noise-free digital data from the probe. The combination of dense recording sites and high channel count yielded well-isolated spiking activity from hundreds of neurons per probe implanted in mice and rats. Using two probes, more than 700 well-isolated single neurons were recorded simultaneously from five brain structures in an awake mouse. The fully integrated functionality and small size of Neuropixels probes allowed large populations of neurons from several brain structures to be recorded in freely moving animals. This combination of high-performance electrode technology and scalable chip fabrication methods opens a path towards recording of brain-wide neural activity during behaviour.


Asunto(s)
Electrodos , Neuronas/fisiología , Silicio/metabolismo , Animales , Corteza Entorrinal/citología , Corteza Entorrinal/fisiología , Femenino , Masculino , Ratones , Movimiento/fisiología , Corteza Prefrontal/citología , Corteza Prefrontal/fisiología , Ratas , Semiconductores , Vigilia/fisiología
3.
J Neurophysiol ; 121(5): 1831-1847, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30840526

RESUMEN

Different neuron types serve distinct roles in neural processing. Extracellular electrical recordings are extensively used to study brain function but are typically blind to cell identity. Morphoelectrical properties of neurons measured on spatially dense electrode arrays have the potential to distinguish neuron types. We used high-density silicon probes to record from cortical and subcortical regions of the mouse brain. Extracellular waveforms of each neuron were detected across many channels and showed distinct spatiotemporal profiles among brain regions. Classification of neurons by brain region was improved with multichannel compared with single-channel waveforms. In visual cortex, unsupervised clustering identified the canonical regular-spiking (RS) and fast-spiking (FS) classes but also indicated a subclass of RS units with unidirectional backpropagating action potentials (BAPs). Moreover, BAPs were observed in many hippocampal RS cells. Overall, waveform analysis of spikes from high-density probes aids neuron identification and can reveal dendritic backpropagation. NEW & NOTEWORTHY It is challenging to identify neuron types with extracellular electrophysiology in vivo. We show that spatiotemporal action potentials measured on high-density electrode arrays can capture cell type-specific morphoelectrical properties, allowing classification of neurons across brain structures and within the cortex. Moreover, backpropagating action potentials are reliably detected in vivo from subpopulations of cortical and hippocampal neurons. Together, these results enhance the utility of dense extracellular electrophysiology for cell-type interrogation of brain network function.


Asunto(s)
Potenciales de Acción , Dendritas/fisiología , Espacio Extracelular/fisiología , Hipocampo/fisiología , Corteza Visual/fisiología , Animales , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Dendritas/clasificación , Electrofisiología/métodos , Hipocampo/citología , Ratones , Optogenética/métodos , Corteza Visual/citología
4.
PLoS Comput Biol ; 14(11): e1006535, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30419013

RESUMEN

Despite advances in experimental techniques and accumulation of large datasets concerning the composition and properties of the cortex, quantitative modeling of cortical circuits under in-vivo-like conditions remains challenging. Here we report and publicly release a biophysically detailed circuit model of layer 4 in the mouse primary visual cortex, receiving thalamo-cortical visual inputs. The 45,000-neuron model was subjected to a battery of visual stimuli, and results were compared to published work and new in vivo experiments. Simulations reproduced a variety of observations, including effects of optogenetic perturbations. Critical to the agreement between responses in silico and in vivo were the rules of functional synaptic connectivity between neurons. Interestingly, after extreme simplification the model still performed satisfactorily on many measurements, although quantitative agreement with experiments suffered. These results emphasize the importance of functional rules of cortical wiring and enable a next generation of data-driven models of in vivo neural activity and computations.


Asunto(s)
Corteza Visual/fisiología , Animales , Simulación por Computador , Ratones , Modelos Neurológicos , Neuronas/metabolismo , Sinapsis/metabolismo , Tálamo/fisiología , Corteza Visual/citología
5.
J Neurosci ; 37(5): 1102-1116, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-27986926

RESUMEN

In both dichromats and trichromats, cone opsin signals are maintained independently in cones and combined at the bipolar and retinal ganglion cell level, creating parallel color opponent pathways to the central visual system. Like other dichromats, the mouse retina expresses a short-wavelength (S) and a medium-wavelength (M) opsin, with the S-opsin shifted to peak sensitivity in the ultraviolet (UV) range. Unlike in primates, nonuniform opsin expression across the retina and coexpression in single cones creates a mostly mixed chromatic signal. Here, we describe the visuotopic and chromatic organization of spiking responses in the dorsal lateral geniculate and of the local field potentials in their recipient zone in primary visual cortex (V1). We used an immersive visual stimulus dome that allowed us to present spatiotemporally modulated UV and green luminance in any region of the visual field of an awake, head-fixed mouse. Consistent with retinal expression of opsins, we observed graded UV-to-green dominated responses from the upper to lower visual fields, with a smaller difference across azimuth. In addition, we identified a subpopulation of cells (<10%) that exhibited spectrally opponent responses along the S-M axis. Luminance signals of each wavelength and color signals project to the middle layers of V1. SIGNIFICANCE STATEMENT: In natural environments, color information is useful for guiding behavior. How small terrestrial mammals such as mice use graded expression of cone opsins to extract visual information from their environments is not clear, even as the use of mice for studying visually guided behavior grows. In this study, we examined the color signals that the retina sends to the visual cortex via the lateral geniculate nucleus of the thalamus. We found that green dominated responses in the lower and nasal visual field and ultraviolet dominated responses in the upper visual field. We describe a subset of cells that exhibit color opponent responses.


Asunto(s)
Visión de Colores/fisiología , Cuerpos Geniculados/anatomía & histología , Cuerpos Geniculados/fisiología , Vías Visuales/anatomía & histología , Vías Visuales/fisiología , Animales , Opsinas de los Conos/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Estimulación Luminosa , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Ganglionares de la Retina/fisiología , Rayos Ultravioleta , Corteza Visual/fisiología , Campos Visuales
6.
Eur J Neurosci ; 45(8): 1013-1023, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28177156

RESUMEN

Despite the widespread use of current-source density (CSD) analysis of extracellular potential recordings in the brain, the physical mechanisms responsible for the generation of the signal are still debated. While the extracellular potential is thought to be exclusively generated by the transmembrane currents, recent studies suggest that extracellular diffusive, advective and displacement currents-traditionally neglected-may also contribute considerably toward extracellular potential recordings. Here, we first justify the application of the electro-quasistatic approximation of Maxwell's equations to describe the electromagnetic field of physiological origin. Subsequently, we perform spatial averaging of currents in neural tissue to arrive at the notion of the CSD and derive an equation relating it to the extracellular potential. We show that, in general, the extracellular potential is determined by the CSD of membrane currents as well as the gradients of the putative extracellular diffusion current. The diffusion current can contribute significantly to the extracellular potential at frequencies less than a few Hertz; in which case it must be subtracted to obtain correct CSD estimates. We also show that the advective and displacement currents in the extracellular space are negligible for physiological frequencies while, within cellular membrane, displacement current contributes toward the CSD as a capacitive current. Taken together, these findings elucidate the relationship between electric currents and the extracellular potential in brain tissue and form the necessary foundation for the analysis of extracellular recordings.


Asunto(s)
Encéfalo/fisiología , Potenciales de la Membrana/fisiología , Modelos Neurológicos , Neuronas/fisiología , Algoritmos , Animales , Difusión , Electricidad , Electrodos Implantados , Campos Electromagnéticos , Masculino , Ratones Endogámicos C57BL , Estimulación Luminosa , Transmisión Sináptica/fisiología , Percepción Visual/fisiología
7.
J Neurosci ; 35(25): 9265-80, 2015 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-26109652

RESUMEN

Understanding the role of corticothalamic projections in shaping visual response properties in the thalamus has been a longstanding challenge in visual neuroscience. Here, we take advantage of the cell-type specificity of a transgenic mouse line, the GN220-Ntsr1 Cre line, to manipulate selectively the activity of a layer 6 (L6) corticogeniculate population while recording visual responses in the dorsal lateral geniculate nucleus (dLGN). Although driving Ntsr1 projection input resulted in reliable reduction in evoked spike count of dLGN neurons, removing these same projections resulted in both increases and decreases in visually evoked spike count. Both increases and decreases are contrast dependent and the sign is consistent over the full range of contrasts. Tuning properties suggest wide convergence of Ntsr1 cells with similar spatial and temporal frequency tuning onto single dLGN cells and we did not find evidence that Ntsr1 cells sharpen spatiotemporal filtering. These nonspecific changes occur independently of changes in burst frequency, indicating that Ntsr1 corticogeniculate activity can result in both net excitation and net inhibition.


Asunto(s)
Cuerpos Geniculados/fisiología , Neuronas/fisiología , Corteza Visual/fisiología , Vías Visuales/fisiología , Percepción Visual/fisiología , Animales , Potenciales Evocados Visuales , Ratones , Ratones Transgénicos
8.
J Neurophysiol ; 113(10): 3943-53, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25855700

RESUMEN

A large array of neuroscientific techniques, including in vivo electrophysiology, two-photon imaging, optogenetics, lesions, and microdialysis, require access to the brain through the skull. Ideally, the necessary craniotomies could be performed in a repeatable and automated fashion, without damaging the underlying brain tissue. Here we report that when drilling through the skull a stereotypical increase in conductance can be observed when the drill bit passes through the skull base. We present an architecture for a robotic device that can perform this algorithm, along with two implementations--one based on homebuilt hardware and one based on commercially available hardware--that can automatically detect such changes and create large numbers of precise craniotomies, even in a single skull. We also show that this technique can be adapted to automatically drill cranial windows several millimeters in diameter. Such robots will not only be useful for helping neuroscientists perform both small and large craniotomies more reliably but can also be used to create precisely aligned arrays of craniotomies with stereotaxic registration to standard brain atlases that would be difficult to drill by hand.


Asunto(s)
Encéfalo/cirugía , Sistemas de Computación , Craneotomía/instrumentación , Craneotomía/métodos , Potenciales de Acción , Algoritmos , Animales , Encéfalo/fisiología , Ratones , Tomografía por Rayos X
9.
Cereb Cortex ; 24(10): 2707-20, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23689635

RESUMEN

Neural responses to sensory stimuli are not independent. Pairwise correlation can reduce coding efficiency, occur independent of stimulus representation, or serve as an additional channel of information, depending on the timescale of correlation and the method of decoding. Any role for correlation depends on its magnitude and structure. In sensory areas with maps, like the orientation map in primary visual cortex (V1), correlation is strongly related to the underlying functional architecture, but it is unclear whether this correlation structure is an essential feature of the system or arises from the arrangement of cells in the map. We assessed the relationship between functional architecture and pairwise correlation by measuring both synchrony and correlated spike count variability in mouse V1, which lacks an orientation map. We observed significant pairwise synchrony, which was organized by distance and relative orientation preference between cells. We also observed nonzero correlated variability in both the anesthetized (0.16) and awake states (0.18). Our results indicate that the structure of pairwise correlation is maintained in the absence of an underlying anatomical organization and may be an organizing principle of the mammalian visual system preserved by nonrandom connectivity within local networks.


Asunto(s)
Potenciales de Acción , Neuronas/fisiología , Corteza Visual/fisiología , Percepción Visual/fisiología , Animales , Interpretación Estadística de Datos , Ratones , Ratones Endogámicos C57BL , Estimulación Luminosa
10.
Physiol Rep ; 12(9): e16001, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38697943

RESUMEN

Local field potential (LFP) oscillations in the beta band (13-30 Hz) in the subthalamic nucleus (STN) of Parkinson's disease patients have been implicated in disease severity and treatment response. The relationship between single-neuron activity in the STN and regional beta power changes remains unclear. We used spike-triggered average (STA) to assess beta synchronization in STN. Beta power and STA magnitude at the beta frequency range were compared in three conditions: STN versus other subcortical structures, dorsal versus ventral STN, and high versus low beta power STN recordings. Magnitude of STA-LFP was greater within the STN compared to extra-STN structures along the trajectory path, despite no difference in percentage of the total power. Within the STN, there was a higher percent beta power in dorsal compared to ventral STN but no difference in STA-LFP magnitude. Further refining the comparison to high versus low beta peak power recordings inside the STN to evaluate if single-unit activity synchronized more strongly with beta band activity in areas of high beta power resulted in a significantly higher STA magnitude for areas of high beta power. Overall, these results suggest that STN single units strongly synchronize to beta activity, particularly units in areas of high beta power.


Asunto(s)
Ritmo beta , Enfermedad de Parkinson , Núcleo Subtalámico , Núcleo Subtalámico/fisiopatología , Enfermedad de Parkinson/fisiopatología , Humanos , Masculino , Ritmo beta/fisiología , Persona de Mediana Edad , Femenino , Anciano , Potenciales de Acción/fisiología , Neuronas/fisiología , Estimulación Encefálica Profunda/métodos
12.
Nat Commun ; 14(1): 2344, 2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-37095130

RESUMEN

The brain consists of many cell classes yet in vivo electrophysiology recordings are typically unable to identify and monitor their activity in the behaving animal. Here, we employed a systematic approach to link cellular, multi-modal in vitro properties from experiments with in vivo recorded units via computational modeling and optotagging experiments. We found two one-channel and six multi-channel clusters in mouse visual cortex with distinct in vivo properties in terms of activity, cortical depth, and behavior. We used biophysical models to map the two one- and the six multi-channel clusters to specific in vitro classes with unique morphology, excitability and conductance properties that explain their distinct extracellular signatures and functional characteristics. These concepts were tested in ground-truth optotagging experiments with two inhibitory classes unveiling distinct in vivo properties. This multi-modal approach presents a powerful way to separate in vivo clusters and infer their cellular properties from first principles.


Asunto(s)
Encéfalo , Corteza Visual Primaria , Ratones , Animales , Encéfalo/fisiología , Biofisica
13.
bioRxiv ; 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37131710

RESUMEN

The brain consists of many cell classes yet in vivo electrophysiology recordings are typically unable to identify and monitor their activity in the behaving animal. Here, we employed a systematic approach to link cellular, multi-modal in vitro properties from experiments with in vivo recorded units via computational modeling and optotagging experiments. We found two one-channel and six multi-channel clusters in mouse visual cortex with distinct in vivo properties in terms of activity, cortical depth, and behavior. We used biophysical models to map the two one- and the six multi-channel clusters to specific in vitro classes with unique morphology, excitability and conductance properties that explain their distinct extracellular signatures and functional characteristics. These concepts were tested in ground-truth optotagging experiments with two inhibitory classes unveiling distinct in vivo properties. This multi-modal approach presents a powerful way to separate in vivo clusters and infer their cellular properties from first principles.

14.
Elife ; 102021 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-34270411

RESUMEN

Extracellular electrophysiology and two-photon calcium imaging are widely used methods for measuring physiological activity with single-cell resolution across large populations of cortical neurons. While each of these two modalities has distinct advantages and disadvantages, neither provides complete, unbiased information about the underlying neural population. Here, we compare evoked responses in visual cortex recorded in awake mice under highly standardized conditions using either imaging of genetically expressed GCaMP6f or electrophysiology with silicon probes. Across all stimulus conditions tested, we observe a larger fraction of responsive neurons in electrophysiology and higher stimulus selectivity in calcium imaging, which was partially reconciled by applying a spikes-to-calcium forward model to the electrophysiology data. However, the forward model could only reconcile differences in responsiveness when restricted to neurons with low contamination and an event rate above a minimum threshold. This work established how the biases of these two modalities impact functional metrics that are fundamental for characterizing sensory-evoked responses.


Asunto(s)
Electrofisiología/métodos , Neuronas/fisiología , Animales , Calcio , Señalización del Calcio , Genotipo , Ratones , Ratones Transgénicos , Neuronas/citología , Corteza Visual/citología , Corteza Visual/fisiología
15.
Elife ; 72018 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-29319502

RESUMEN

Mammalian visual behaviors, as well as responses in the neural systems underlying these behaviors, are driven by luminance and color contrast. With constantly improving tools for measuring activity in cell-type-specific populations in the mouse during visual behavior, it is important to define the extent of luminance and color information that is behaviorally accessible to the mouse. A non-uniform distribution of cone opsins in the mouse retina potentially complicates both luminance and color sensitivity; opposing gradients of short (UV-shifted) and middle (blue/green) cone opsins suggest that color discrimination and wavelength-specific luminance contrast sensitivity may differ with retinotopic location. Here we ask how well mice can discriminate color and wavelength-specific luminance changes across visuotopic space. We found that mice were able to discriminate color and were able to do so more broadly across visuotopic space than expected from the cone-opsin distribution. We also found wavelength-band-specific differences in luminance sensitivity.


Asunto(s)
Visión de Colores , Color , Sensibilidad de Contraste , Luz , Visión Ocular , Animales , Ratones
16.
FASEB J ; 20(1): 23-8, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16394263

RESUMEN

At the request of the United States Defense Advanced Research Projects Agency, we attempted to replicate the data of Professor Jacques Benveniste that digital signals recorded on a computer disc produce specific biological effects. The hypothesis was that a digitized thrombin inhibitor signal would inhibit the fibrinogen-thrombin coagulation pathway. Because of the controversies associated with previous research of Prof. Benveniste, we developed a system for the management of social controversy in science that incorporated an expert in social communication and conflict management. The social management approach was an adaptation of interactional communication theory, for management of areas that interfere with the conduct of good science. This process allowed us to successfully complete a coordinated effort by a multidisciplinary team, including Prof. Benveniste, a hematologist, engineer, skeptic, statistician, neuroscientist and conflict management expert. Our team found no replicable effects from digital signals.


Asunto(s)
Campos Electromagnéticos , Investigación/normas , Transducción de Señal/fisiología , Conflicto Psicológico , Fibrinógeno/antagonistas & inhibidores , Fibrinógeno/metabolismo , Reproducibilidad de los Resultados , Trombina/antagonistas & inhibidores , Trombina/metabolismo , Estados Unidos , United States Government Agencies
17.
Front Neural Circuits ; 10: 20, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27065811

RESUMEN

The mouse visual system is an emerging model for the study of cortical and thalamic circuit function. To maximize the usefulness of this model system, it is important to analyze the similarities and differences between the organization of all levels of the murid visual system with other, better studied systems (e.g., non-human primates and the domestic cat). While the understanding of mouse retina and cortex has expanded rapidly, less is known about mouse dorsal lateral geniculate nucleus (dLGN). Here, we study whether parallel processing streams exist in mouse dLGN. We use a battery of stimuli that have been previously shown to successfully distinguish parallel streams in other species: electrical stimulation of the optic chiasm, contrast-reversing stationary gratings at varying spatial phase, drifting sinusoidal gratings, dense noise for receptive field reconstruction, and frozen contrast-modulating noise. As in the optic nerves of domestic cats and non-human primates, we find evidence for multiple conduction velocity groups after optic chiasm stimulation. As in so-called "visual mammals", we find a subpopulation of mouse dLGN cells showing non-linear spatial summation. However, differences in stimulus selectivity and sensitivity do not provide sufficient basis for identification of clearly distinct classes of relay cells. Nevertheless, consistent with presumptively homologous status of dLGNs of all mammals, there are substantial similarities between response properties of mouse dLGN neurons and those of cats and primates.


Asunto(s)
Mapeo Encefálico , Cuerpos Geniculados/citología , Células Receptoras Sensoriales/fisiología , Corteza Visual/fisiología , Campos Visuales/fisiología , Vías Visuales/fisiología , Potenciales de Acción/fisiología , Animales , Estimulación Eléctrica , Cuerpos Geniculados/fisiología , Modelos Lineales , Ratones , Ratones Endogámicos C57BL , Quiasma Óptico/fisiología , Estimulación Luminosa , Retina/fisiología
18.
PLoS One ; 10(12): e0144760, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26657323

RESUMEN

Optogenetic techniques are used widely to perturb and interrogate neural circuits in behaving animals, but illumination can have additional effects, such as the activation of endogenous opsins in the retina. We found that illumination, delivered deep into the brain via an optical fiber, evoked a behavioral artifact in mice performing a visually guided discrimination task. Compared with blue (473 nm) and yellow (589 nm) illumination, red (640 nm) illumination evoked a greater behavioral artifact and more activity in the retina, the latter measured with electrical recordings. In the mouse, the sensitivity of retinal opsins declines steeply with wavelength across the visible spectrum, but propagation of light through brain tissue increases with wavelength. Our results suggest that poor retinal sensitivity to red light was overcome by relatively robust propagation of red light through brain tissue and stronger illumination of the retina by red than by blue or yellow light. Light adaptation of the retina, via an external source of illumination, suppressed retinal activation and the behavioral artifact without otherwise impacting behavioral performance. In summary, long wavelength optogenetic stimuli are particularly prone to evoke behavioral artifacts via activation of retinal opsins in the mouse, but light adaptation of the retina can provide a simple and effective mitigation of the artifact.


Asunto(s)
Artefactos , Neuronas Colinérgicas/fisiología , Discriminación en Psicología/efectos de la radiación , Potenciales Evocados Visuales/fisiología , Optogenética , Reconocimiento Visual de Modelos/fisiología , Retina/fisiología , Adaptación Fisiológica , Animales , Channelrhodopsins , Neuronas Colinérgicas/citología , Neuronas Colinérgicas/efectos de la radiación , Discriminación en Psicología/fisiología , Potenciales Evocados Visuales/efectos de la radiación , Femenino , Expresión Génica , Luz , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microelectrodos , Fibras Ópticas , Reconocimiento Visual de Modelos/efectos de la radiación , Estimulación Luminosa , Retina/citología , Retina/efectos de la radiación , Técnicas Estereotáxicas , Análisis y Desempeño de Tareas
19.
Oecologia ; 105(2): 247-257, 1996 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28307090

RESUMEN

Disturbance may play an important role in generating patterns of abundance and distribution of biotic assemblages, particularly if its impact differs among habitat patches. Despite much speculation concerning the probable importance of spatial variation in the response of stream fauna to flooding, empirical work on patch-specific responses to spates is largely lacking. Floods typically reduce the abundance of lotic invertebrates dramatically in open-channel areas. We conducted a set of experiments to determine if faunal abundances are less affected in patches more sheltered due to the presence of woody debris dams. Specifically, we tested two hypotheses using chironomids and copepods living in a warmwater, 4th order stream: (1) the effect of flooding on the fauna varies between patches associated with debris dams versus the open channel, and (2) the absence of woody debris in a stream impedes faunal recovery throughout the channel following floods. We tested the first hypothesis by quantifying faunal abundances prior to, during, and following two floods in four patch types: mid-channel sandy patches distant from dams, coarse sediments associated with dams, fine sediments associated with dams, and leafy debris in dams. The second hypothesis was tested by removing all of the woody debris from two stretches of the stream and comparing the impact of a flood on fauna in debris-removed versus control stretches. Across all of the eight study dams, there were patchspecific faunal responses to two floods. Removal of woody debris from the stream did not prevent faunal recovery throughout the channel; however, the presence of woody debris dams did confer greater resistance of fauna to floods (as measured by no decrease in abundance during flooding) in two patch types. Abundances of chironomids and, to a lesser extent, copepods in the leafy debris of dams and in fine sediment patches associated with some dams either did not change or increased during floods, despite the fact that abundances in the dominant patch type of the stream (the sandy mid-channel) were reduced by 75-95%. All instances of faunal increase were limited to fine sediment patches associated with dams, thus entire dams cannot be labeled as flow refugia per se. Statistically, we distinguished fine patches which accumulated animals during floods from the other fine patches based on two physical attributes. Patches accumulating animals were all characterized by low water flux and nearbed flow, which likely contributed to the retention and/or passive deposition of animals. Whole dam attributes (e.g. dam size or complexity) were not useful in predicting which of the dams would accumulate animals in their fine sediments during flooding. Although structural complexity - here in the form of wood and leafy debris - is clearly important in generating biotic pattern in many ecosystems, our work underscores the need to understand what processes are responsible for the link between physical structure and biotic pattern.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA