Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Am J Respir Crit Care Med ; 207(6): 693-703, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36457159

RESUMEN

Rationale: Shared symptoms and genetic architecture between coronavirus disease (COVID-19) and lung fibrosis suggest severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection may lead to progressive lung damage. Objectives: The UK Interstitial Lung Disease Consortium (UKILD) post-COVID-19 study interim analysis was planned to estimate the prevalence of residual lung abnormalities in people hospitalized with COVID-19 on the basis of risk strata. Methods: The PHOSP-COVID-19 (Post-Hospitalization COVID-19) study was used to capture routine and research follow-up within 240 days from discharge. Thoracic computed tomography linked by PHOSP-COVID-19 identifiers was scored for the percentage of residual lung abnormalities (ground-glass opacities and reticulations). Risk factors in linked computed tomography were estimated with Bayesian binomial regression, and risk strata were generated. Numbers within strata were used to estimate posthospitalization prevalence using Bayesian binomial distributions. Sensitivity analysis was restricted to participants with protocol-driven research follow-up. Measurements and Main Results: The interim cohort comprised 3,700 people. Of 209 subjects with linked computed tomography (median, 119 d; interquartile range, 83-155), 166 people (79.4%) had more than 10% involvement of residual lung abnormalities. Risk factors included abnormal chest X-ray (risk ratio [RR], 1.21; 95% credible interval [CrI], 1.05-1.40), percent predicted DlCO less than 80% (RR, 1.25; 95% CrI, 1.00-1.56), and severe admission requiring ventilation support (RR, 1.27; 95% CrI, 1.07-1.55). In the remaining 3,491 people, moderate to very high risk of residual lung abnormalities was classified at 7.8%, and posthospitalization prevalence was estimated at 8.5% (95% CrI, 7.6-9.5), rising to 11.7% (95% CrI, 10.3-13.1) in the sensitivity analysis. Conclusions: Residual lung abnormalities were estimated in up to 11% of people discharged after COVID-19-related hospitalization. Health services should monitor at-risk individuals to elucidate long-term functional implications.


Asunto(s)
COVID-19 , Enfermedades Pulmonares Intersticiales , Humanos , SARS-CoV-2 , COVID-19/epidemiología , Teorema de Bayes , Pulmón/diagnóstico por imagen , Hospitalización
2.
Am J Physiol Lung Cell Mol Physiol ; 325(4): L487-L499, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37643008

RESUMEN

Transforming growth factor-ß1 (TGFß1) is the key profibrotic cytokine in idiopathic pulmonary fibrosis (IPF), but the primary source of this cytokine in this disease is unknown. Platelets have abundant stores of TGFß1, although the role of these cells in IPF is ill-defined. In this study, we investigated whether platelets, and specifically platelet-derived TGFß1, mediate IPF disease progression. Patients with IPF and non-IPF patients were recruited to determine platelet reactivity, and separate cohorts of patients with IPF were followed for mortality. To study whether platelet-derived TGFß1 modulates pulmonary fibrosis (PF), mice with a targeted deletion of TGFß1 in megakaryocytes and platelets (TGFß1fl/fl.PF4-Cre) were used in the well-characterized bleomycin-induced pulmonary fibrosis (PF) animal model. In a discovery cohort, we found significantly higher mortality in patients with IPF who had elevated platelet counts within the normal range. However, our validation cohort did not confirm this observation, despite significantly increased platelets, neutrophils, active TGFß1, and CCL5, a chemokine produced by inflammatory cells, in the blood, lung, and bronchoalveolar lavage (BAL) of patients with IPF. In vivo, we showed that despite platelets being readily detected within the lungs of bleomycin-treated mice, neither the degree of pulmonary inflammation nor fibrosis was significantly different between TGFß1fl/fl.PF4-Cre and control mice. Our results demonstrate for the first time that platelet-derived TGFß1 does not significantly mediate inflammation or fibrosis in a PF animal model. Furthermore, our human studies revealed blood platelet counts do not consistently predict mortality in IPF but other platelet-derived mediators, such as C-C chemokine ligand 5 (CCL5), may promote neutrophil recruitment and human IPF.NEW & NOTEWORTHY Platelets are a rich source of profibrotic TGFß; however, the role of platelets in idiopathic pulmonary fibrosis (IPF) is unclear. We identified that patients with IPF have significantly more platelets, neutrophils, and active TGFß in their airways than control patients. Using an animal model of IPF, we demonstrated that platelet-derived TGFß does not significantly drive lung fibrosis or inflammation. Our findings offer a better understanding of platelets in both human and animal studies of IPF.


Asunto(s)
Fibrosis Pulmonar Idiopática , Humanos , Ratones , Animales , Fibrosis Pulmonar Idiopática/patología , Pulmón/patología , Factor de Crecimiento Transformador beta1/farmacología , Fibrosis , Factor de Crecimiento Transformador beta , Bleomicina/efectos adversos , Inflamación/patología , Factores de Crecimiento Transformadores/efectos adversos
3.
Thorax ; 76(4): 396-398, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33172844

RESUMEN

Large numbers of people are being discharged from hospital following COVID-19 without assessment of recovery. In 384 patients (mean age 59.9 years; 62% male) followed a median 54 days post discharge, 53% reported persistent breathlessness, 34% cough and 69% fatigue. 14.6% had depression. In those discharged with elevated biomarkers, 30.1% and 9.5% had persistently elevated d-dimer and C reactive protein, respectively. 38% of chest radiographs remained abnormal with 9% deteriorating. Systematic follow-up after hospitalisation with COVID-19 identifies the trajectory of physical and psychological symptom burden, recovery of blood biomarkers and imaging which could be used to inform the need for rehabilitation and/or further investigation.


Asunto(s)
COVID-19/diagnóstico , Diagnóstico por Imagen , Pulmón/diagnóstico por imagen , Pandemias , SARS-CoV-2 , Biomarcadores/sangre , COVID-19/sangre , Estudios Transversales , Femenino , Hospitalización/tendencias , Humanos , Masculino , Persona de Mediana Edad , Índice de Severidad de la Enfermedad
5.
Front Immunol ; 15: 1372658, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38827740

RESUMEN

Background: Persistent radiological lung abnormalities are evident in many survivors of acute coronavirus disease 2019 (COVID-19). Consolidation and ground glass opacities are interpreted to indicate subacute inflammation whereas reticulation is thought to reflect fibrosis. We sought to identify differences at molecular and cellular level, in the local immunopathology of post-COVID inflammation and fibrosis. Methods: We compared single-cell transcriptomic profiles and T cell receptor (TCR) repertoires of bronchoalveolar cells obtained from convalescent individuals with each radiological pattern, targeting lung segments affected by the predominant abnormality. Results: CD4 central memory T cells and CD8 effector memory T cells were significantly more abundant in those with inflammatory radiology. Clustering of similar TCRs from multiple donors was a striking feature of both phenotypes, consistent with tissue localised antigen-specific immune responses. There was no enrichment for known SARS-CoV-2-reactive TCRs, raising the possibility of T cell-mediated immunopathology driven by failure in immune self-tolerance. Conclusions: Post-COVID radiological inflammation and fibrosis show evidence of shared antigen-specific T cell responses, suggesting a role for therapies targeting T cells in limiting post-COVID lung damage.


Asunto(s)
COVID-19 , SARS-CoV-2 , Análisis de la Célula Individual , Humanos , COVID-19/inmunología , COVID-19/patología , SARS-CoV-2/inmunología , Masculino , Femenino , Persona de Mediana Edad , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de Antígenos de Linfocitos T/genética , Fibrosis Pulmonar/inmunología , Fibrosis Pulmonar/etiología , Fibrosis Pulmonar/patología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD4-Positivos/inmunología , Pulmón/inmunología , Pulmón/patología , Pulmón/diagnóstico por imagen , Anciano , Adulto , Inflamación/inmunología , Inflamación/patología , Líquido del Lavado Bronquioalveolar/inmunología , Líquido del Lavado Bronquioalveolar/citología , Células T de Memoria/inmunología , Transcriptoma
6.
BMJ Open Respir Res ; 8(1)2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34556492

RESUMEN

INTRODUCTION: The COVID-19 pandemic has led to over 100 million cases worldwide. The UK has had over 4 million cases, 400 000 hospital admissions and 100 000 deaths. Many patients with COVID-19 suffer long-term symptoms, predominantly breathlessness and fatigue whether hospitalised or not. Early data suggest potentially severe long-term consequence of COVID-19 is development of long COVID-19-related interstitial lung disease (LC-ILD). METHODS AND ANALYSIS: The UK Interstitial Lung Disease Consortium (UKILD) will undertake longitudinal observational studies of patients with suspected ILD following COVID-19. The primary objective is to determine ILD prevalence at 12 months following infection and whether clinically severe infection correlates with severity of ILD. Secondary objectives will determine the clinical, genetic, epigenetic and biochemical factors that determine the trajectory of recovery or progression of ILD. Data will be obtained through linkage to the Post-Hospitalisation COVID platform study and community studies. Additional substudies will conduct deep phenotyping. The Xenon MRI investigation of Alveolar dysfunction Substudy will conduct longitudinal xenon alveolar gas transfer and proton perfusion MRI. The POST COVID-19 interstitial lung DiseasE substudy will conduct clinically indicated bronchoalveolar lavage with matched whole blood sampling. Assessments include exploratory single cell RNA and lung microbiomics analysis, gene expression and epigenetic assessment. ETHICS AND DISSEMINATION: All contributing studies have been granted appropriate ethical approvals. Results from this study will be disseminated through peer-reviewed journals. CONCLUSION: This study will ensure the extent and consequences of LC-ILD are established and enable strategies to mitigate progression of LC-ILD.


Asunto(s)
COVID-19/complicaciones , Enfermedades Pulmonares Intersticiales , Humanos , Estudios Longitudinales , Enfermedades Pulmonares Intersticiales/epidemiología , Estudios Observacionales como Asunto , Pandemias , Estudios Prospectivos , Reino Unido/epidemiología , Síndrome Post Agudo de COVID-19
7.
Front Med (Lausanne) ; 7: 610257, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33537331

RESUMEN

Pulmonary manifestations of systemic lupus erythematosus (SLE) are wide-ranging and debilitating in nature. Previous studies suggest that anywhere between 20 and 90% of patients with SLE will be troubled by some form of respiratory involvement throughout the course of their disease. This can include disorders of the lung parenchyma (such as interstitial lung disease and acute pneumonitis), pleura (resulting in pleurisy and pleural effusion), and pulmonary vasculature [including pulmonary arterial hypertension (PAH), pulmonary embolic disease, and pulmonary vasculitis], whilst shrinking lung syndrome is a rare complication of the disease. Furthermore, the risks of respiratory infection (which often mimic acute pulmonary manifestations of SLE) are increased by the immunosuppressive treatment that is routinely used in the management of lupus. Although these conditions commonly present with a combination of dyspnea, cough and chest pain, it is important to consider that some patients may be asymptomatic with the only suggestion of the respiratory disorder being found incidentally on thoracic imaging or pulmonary function tests. Treatment decisions are often based upon evidence from case reports or small cases series given the paucity of clinical trial data specifically focused on pulmonary manifestations of SLE. Many therapeutic options are often initiated based on studies in severe manifestations of SLE affecting other organ systems or from experience drawn from the use of these therapeutics in the pulmonary manifestations of other systemic autoimmune rheumatic diseases. In this review, we describe the key features of the pulmonary manifestations of SLE and approaches to investigation and management in clinical practice.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA