Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Proc Natl Acad Sci U S A ; 112(47): E6486-95, 2015 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-26604306

RESUMEN

Defects in the innate immune system in the lung with attendant bacterial infections contribute to lung tissue damage, respiratory insufficiency, and ultimately death in the pathogenesis of cystic fibrosis (CF). Professional phagocytes, including alveolar macrophages (AMs), have specialized pathways that ensure efficient killing of pathogens in phagosomes. Phagosomal acidification facilitates the optimal functioning of degradative enzymes, ultimately contributing to bacterial killing. Generation of low organellar pH is primarily driven by the V-ATPases, proton pumps that use cytoplasmic ATP to load H(+) into the organelle. Critical to phagosomal acidification are various channels derived from the plasma membrane, including the anion channel cystic fibrosis transmembrane conductance regulator, which shunt the transmembrane potential generated by movement of protons. Here we show that the transient receptor potential canonical-6 (TRPC6) calcium-permeable channel in the AM also functions to shunt the transmembrane potential generated by proton pumping and is capable of restoring microbicidal function to compromised AMs in CF and enhancement of function in non-CF cells. TRPC6 channel activity is enhanced via translocation to the cell surface (and then ultimately to the phagosome during phagocytosis) in response to G-protein signaling activated by the small molecule (R)-roscovitine and its derivatives. These data show that enhancing vesicular insertion of the TRPC6 channel to the plasma membrane may represent a general mechanism for restoring phagosome activity in conditions, where it is lost or impaired.


Asunto(s)
Membranas Intracelulares/metabolismo , Fagosomas/metabolismo , Canales Catiónicos TRPC/metabolismo , Ácidos/metabolismo , Animales , Calcio/metabolismo , Señalización del Calcio/efectos de los fármacos , Línea Celular , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Diglicéridos/metabolismo , Exocitosis/efectos de los fármacos , Técnica del Anticuerpo Fluorescente , Humanos , Membranas Intracelulares/efectos de los fármacos , Activación del Canal Iónico/efectos de los fármacos , Macrófagos Alveolares/efectos de los fármacos , Macrófagos Alveolares/metabolismo , Ratones , Viabilidad Microbiana/efectos de los fármacos , Modelos Biológicos , Técnicas de Placa-Clamp , Toxina del Pertussis/farmacología , Fagosomas/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Purinas/química , Purinas/farmacología , Receptores Acoplados a Proteínas G/metabolismo , Roscovitina , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Canal Catiónico TRPC6
2.
Nat Cell Biol ; 8(9): 933-44, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16921366

RESUMEN

Acidification of phagosomes has been proposed to have a key role in the microbicidal function of phagocytes. Here, we show that in alveolar macrophages the cystic fibrosis transmembrane conductance regulator Cl- channel (CFTR) participates in phagosomal pH control and has bacterial killing capacity. Alveolar macrophages from Cftr-/- mice retained the ability to phagocytose and generate an oxidative burst, but exhibited defective killing of internalized bacteria. Lysosomes from CFTR-null macrophages failed to acidify, although they retained normal fusogenic capacity with nascent phagosomes. We hypothesize that CFTR contributes to lysosomal acidification and that in its absence phagolysosomes acidify poorly, thus providing an environment conducive to bacterial replication.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/fisiología , Macrófagos/fisiología , Fagocitosis/fisiología , Fagosomas/fisiología , Pseudomonas aeruginosa/fisiología , Animales , AMP Cíclico/fisiología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/biosíntesis , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Humanos , Concentración de Iones de Hidrógeno , Técnicas In Vitro , Activación del Canal Iónico , Lisosomas/fisiología , Macrófagos/metabolismo , Macrófagos/microbiología , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/microbiología , Macrófagos Alveolares/fisiología , Macrófagos Peritoneales/metabolismo , Macrófagos Peritoneales/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Viabilidad Microbiana , Neutrófilos/metabolismo , Neutrófilos/fisiología , Estallido Respiratorio
3.
Neuron ; 52(2): 321-33, 2006 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-17046694

RESUMEN

It is well established that ligand-gated chloride flux across the plasma membrane modulates neuronal excitability. We find that a voltage-dependent Cl(-) conductance increases neuronal excitability in immature rodents as well, enhancing the time course of NMDA receptor-mediated miniature excitatory postsynaptic potentials (mEPSPs). This Cl(-) conductance is activated by CaMKII, is electrophysiologically identical to the CaMKII-activated CLC-3 conductance in nonneuronal cells, and is absent in clc-3(-/-) mice. Systematically decreasing [Cl(-)](i) to mimic postnatal [Cl(-)](i) regulation progressively decreases the amplitude and decay time constant of spontaneous mEPSPs. This Cl(-)-dependent change in synaptic strength is absent in clc-3(-/-) mice. Using surface biotinylation, immunohistochemistry, electron microscopy, and coimmunoprecipitation studies, we find that CLC-3 channels are localized on the plasma membrane, at postsynaptic sites, and in association with NMDA receptors. This is the first demonstration that a voltage-dependent chloride conductance modulates neuronal excitability. By increasing postsynaptic potentials in a Cl(-) dependent fashion, CLC-3 channels regulate neuronal excitability postsynaptically in immature neurons.


Asunto(s)
Canales de Cloruro/metabolismo , Potenciales Postsinápticos Excitadores/fisiología , Neuronas/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica/fisiología , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Diferenciación Celular/fisiología , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Canales de Cloruro/genética , Cloruros/metabolismo , Regulación hacia Abajo/fisiología , Ácido Glutámico/metabolismo , Hipocampo/crecimiento & desarrollo , Hipocampo/metabolismo , Hipocampo/ultraestructura , Ratones , Ratones Noqueados , Neuronas/ultraestructura , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/ultraestructura , Membranas Sinápticas/metabolismo , Sinaptosomas/metabolismo
4.
J Biol Chem ; 284(51): 35926-38, 2009 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-19837664

RESUMEN

Alveolar macrophages (AMs) play a major role in host defense against microbial infections in the lung. To perform this function, these cells must ingest and destroy pathogens, generally in phagosomes, as well as secrete a number of products that signal other immune cells to respond. Recently, we demonstrated that murine alveolar macrophages employ the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel as a determinant in lysosomal acidification (Di, A., Brown, M. E., Deriy, L. V., Li, C., Szeto, F. L., Chen, Y., Huang, P., Tong, J., Naren, A. P., Bindokas, V., Palfrey, H. C., and Nelson, D. J. (2006) Nat. Cell Biol. 8, 933-944). Lysosomes and phagosomes in murine cftr(-/-) AMs failed to acidify, and the cells were deficient in bacterial killing compared with wild type controls. Cystic fibrosis is caused by mutations in CFTR and is characterized by chronic lung infections. The information about relationships between the CFTR genotype and the disease phenotype is scarce both on the organismal and cellular level. The most common disease-causing mutation, DeltaF508, is found in 70% of patients with cystic fibrosis. The mutant protein fails to fold properly and is targeted for proteosomal degradation. G551D, the second most common mutation, causes loss of function of the protein at the plasma membrane. In this study, we have investigated the impact of CFTR DeltaF508 and G551D on a set of core intracellular functions, including organellar acidification, granule secretion, and microbicidal activity in the AM. Utilizing primary AMs from wild type, cftr(-/-), as well as mutant mice, we show a tight correlation between CFTR genotype and levels of lysosomal acidification, bacterial killing, and agonist-induced secretory responses, all of which would be expected to contribute to a significant impact on microbial clearance in the lung.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Fibrosis Quística/mortalidad , Lisosomas/metabolismo , Macrófagos Alveolares/metabolismo , Fagosomas/metabolismo , Animales , Línea Celular , Fibrosis Quística/genética , Fibrosis Quística/patología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Humanos , Lisosomas/genética , Lisosomas/patología , Macrófagos Alveolares/patología , Ratones , Ratones Endogámicos CFTR , Ratones Noqueados , Mutación , Fagosomas/genética , Fagosomas/patología
5.
J Clin Sleep Med ; 11(10): 1199-236, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26414986

RESUMEN

A systematic literature review and meta-analyses (where appropriate) were performed and the GRADE approach was used to update the previous American Academy of Sleep Medicine Practice Parameters on the treatment of intrinsic circadian rhythm sleep-wake disorders. Available data allowed for positive endorsement (at a second-tier degree of confidence) of strategically timed melatonin (for the treatment of DSWPD, blind adults with N24SWD, and children/ adolescents with ISWRD and comorbid neurological disorders), and light therapy with or without accompanying behavioral interventions (adults with ASWPD, children/adolescents with DSWPD, and elderly with dementia). Recommendations against the use of melatonin and discrete sleep-promoting medications are provided for demented elderly patients, at a second- and first-tier degree of confidence, respectively. No recommendations were provided for remaining treatments/ populations, due to either insufficient or absent data. Areas where further research is needed are discussed.


Asunto(s)
Trastornos del Sueño-Vigilia/terapia , Academias e Institutos , Adolescente , Adulto , Niño , Humanos , Trastornos del Sueño del Ritmo Circadiano/terapia , Medicina del Sueño , Estados Unidos
6.
Nat Neurosci ; 14(4): 487-94, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21378974

RESUMEN

The absence of the chloride channel CLC-3 in Clcn3(-/-) mice results in hippocampal degeneration with a distinct temporal-spatial sequence that resembles neuronal loss in temporal lobe epilepsy. We examined how the loss of CLC-3 might affect GABAergic synaptic transmission in the hippocampus. An electrophysiological study of synaptic function in hippocampal slices taken from Clcn3(-/-) mice before the onset of neurodegeneration revealed a substantial decrease in the amplitude and frequency of miniature inhibitory postsynaptic currents compared with those in wild-type slices. We found that CLC-3 colocalized with the vesicular GABA transporter VGAT in the CA1 region of the hippocampus. Acidification of inhibitory synaptic vesicles induced by Cl(-) showed a marked dependence on CLC-3 expression. The decrease in inhibitory transmission in Clcn3(-/-) mice suggests that the neurotransmitter loading of synaptic vesicles was reduced, which we attribute to defective vesicular acidification. Our observations extend the role of Cl(-) in inhibitory transmission from that of a postsynaptic permeant species to a presynaptic regulatory element.


Asunto(s)
Canales de Cloruro/fisiología , Hipocampo/metabolismo , Inhibición Neural/fisiología , Terminales Presinápticos/metabolismo , Transmisión Sináptica/genética , Ácido gamma-Aminobutírico/fisiología , Animales , Región CA1 Hipocampal/metabolismo , Región CA1 Hipocampal/ultraestructura , Canales de Cloruro/deficiencia , Canales de Cloruro/genética , Hipocampo/ultraestructura , Concentración de Iones de Hidrógeno , Potenciales Postsinápticos Inhibidores/genética , Ratones , Ratones Noqueados , Inhibición Neural/genética , Técnicas de Cultivo de Órganos , Terminales Presinápticos/ultraestructura , Ratas , Ratas Wistar , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/ultraestructura , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/fisiología
8.
Cell Metab ; 10(4): 316-23, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19808024

RESUMEN

Insulin secretion from pancreatic beta cells is dependent on maturation and acidification of the secretory granule, processes necessary for prohormone convertase cleavage of proinsulin. Previous studies in isolated beta cells revealed that acidification may be dependent on the granule membrane chloride channel ClC-3, in a step permissive for a regulated secretory response. In this study, immuno-EM of beta cells revealed colocalization of ClC-3 and insulin on secretory granules. Clcn3(-/-) mice as well as isolated islets demonstrate impaired insulin secretion; Clcn3(-/-) beta cells are defective in regulated insulin exocytosis and granular acidification. Increased amounts of proinsulin were found in the majority of secretory granules in the Clcn3(-/-) mice, while in Clcn3(+/+) cells, proinsulin was confined to the immature secretory granules. These results demonstrate that in pancreatic beta cells, chloride channels, specifically ClC-3, are localized on insulin granules and play a role in insulin processing as well as insulin secretion through regulation of granular acidification.


Asunto(s)
Canales de Cloruro/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Animales , Glucemia/metabolismo , Células Cultivadas , Canales de Cloruro/genética , Cloruros/metabolismo , Gránulos Citoplasmáticos/metabolismo , Gránulos Citoplasmáticos/ultraestructura , Exocitosis/fisiología , Concentración de Iones de Hidrógeno , Secreción de Insulina , Células Secretoras de Insulina/citología , Masculino , Ratones , Ratones Noqueados , Proinsulina/metabolismo
9.
Cell Metab ; 12(4): 310, 2010 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-30029307
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA