Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Mol Biol Rep ; 40(12): 6757-64, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24065548

RESUMEN

Doxorubicin (DOX) is an anticancer drug with cardiotoxic side effects mostly caused by iron homeostasis dysregulation. Mitochondria are involved in iron trafficking and mitochondrial ferritin (FtMt) was shown to provide protection against cellular iron imbalance. Therefore, we hypothesized that FtMt overexpression could limit DOX effects on iron homeostasis. Heart's homogenates of DOX-treated C57BL/6 mice were analyzed for cytosolic and mitochondrial iron-related proteins' expression and activity, revealing high cytosolic ferritin and ferritin-bound iron, low transferrin-receptor 1 and a strong hepcidin upregulation. Mitochondrial iron-related proteins (aconitase, succinate-dehydrogenase, frataxin) seemed, however, unaffected, although a partial inactivation of superoxide dismutase 2 was detected. Importantly, the ectopic expression of FtMt in human HeLa cells partially reverted DOX-induced iron imbalance. Our results, while confirming DOX effects on iron homeostasis, demonstrate that DOX affects more cytosolic than mitochondrial iron metabolism both in murine hearts and human HeLa cells and that FtMt overexpression is able to prevent most of these effects in HeLa cells.


Asunto(s)
Citosol/metabolismo , Doxorrubicina/farmacología , Hierro/metabolismo , Mitocondrias/metabolismo , Sustancias Protectoras/farmacología , Animales , Citosol/efectos de los fármacos , Células HeLa , Homeostasis/efectos de los fármacos , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Miocardio/metabolismo
2.
Neurobiol Dis ; 39(2): 204-10, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20399859

RESUMEN

Pantothenate kinase 2 (Pank2) is a mitochondrial enzyme that catalyses the first regulatory step of Coenzyme A synthesis and that is responsible for a genetic movement disorder named Pank-associated neurodegeneration (PKAN). This is characterized by abnormal iron accumulation in the brain, particularly in the globus pallidus. We downregulated Pank2 in some cell lines by using specific siRNAs to study its effect on iron homeostasis. In HeLa cells this caused a reduction of cell proliferation and of aconitase activity, signs of cytosolic iron deficiency without mitochondrial iron deposition, and a 12-fold induction of ferroportin mRNA. Pank2 silencing caused a strong induction of ferroportin mRNA also in hepatoma HepG2, a modest one in neuroblastoma SH-SY5Y and none in glioma U373 cells. A reduction of cell growth was observed in all these cell types. The strong Pank2-mediated alteration of ferroportin expression in some cell types might alter iron transfer to the brain and be connected with brain iron accumulation.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Proliferación Celular/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Hierro/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , ARN Interferente Pequeño/farmacología , Aconitato Hidratasa/metabolismo , Proteínas de Transporte de Catión/genética , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Activación Enzimática/efectos de los fármacos , Activación Enzimática/genética , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Protoporfirinas/metabolismo , ARN Mensajero/metabolismo , Superóxido Dismutasa/metabolismo
3.
Biochim Biophys Acta ; 1782(2): 90-8, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18160053

RESUMEN

Frataxin is a ubiquitous mitochondrial iron-binding protein involved in the biosynthesis of Fe/S clusters and heme. Its deficiency causes Friedreich's ataxia, a severe neurodegenerative disease. Mitochondrial ferritin is another major iron-binding protein, abundant in the testis and in sideroblasts from patients with sideroblastic anemia. We previously showed that its expression rescued the defects caused by frataxin deficiency in the yeast. To verify if this occurs also in mammals, we silenced frataxin in HeLa cells. This caused a reduction of growth, inhibition of the activity of aconitase and superoxide dismutase-2 and reduction of cytosolic ferritins without alteration of mitochondrial iron content. None of these effects were evident when silencing was done in cells expressing mitochondrial ferritin. These data indicate that frataxin has some roles in controlling the balance between different mitochondrial iron pools that are partially in common with those of mitochondrial ferritin.


Asunto(s)
Apoferritinas/genética , Proliferación Celular/efectos de los fármacos , Proteínas de Unión a Hierro/antagonistas & inhibidores , Proteínas de Unión a Hierro/genética , ARN Interferente Pequeño/farmacología , Citrato (si)-Sintasa/metabolismo , Genes Mitocondriales , Células HeLa , Humanos , Hierro/metabolismo , Proteínas de Unión a Hierro/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/enzimología , Mitocondrias/metabolismo , Interferencia de ARN/fisiología , Succinato Deshidrogenasa/metabolismo , Transfección , Frataxina
4.
Sci Rep ; 9(1): 8001, 2019 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-31142801

RESUMEN

Generating new kidneys using tissue engineering technologies is an innovative strategy for overcoming the shortage of donor organs for transplantation. Here we report how to efficiently engineer the kidney vasculature of decellularized rat kidney scaffolds by using human induced pluripotent stem cell (hiPSCs)-derived endothelial cells (hiPSC-ECs). In vitro, hiPSC-ECs responded to flow stress by acquiring an alignment orientation, and attached to and proliferated on the acellular kidney sections, maintaining their phenotype. The hiPSC-ECs were able to self-organize into chimeric kidney organoids to form vessel-like structures. Ex vivo infusion of hiPSC-ECs through the renal artery and vein of acellular kidneys resulted in the uniform distribution of the cells in all the vasculature compartments, from glomerular capillaries to peritubular capillaries and small vessels. Ultrastructural analysis of repopulated scaffolds through transmission and scanning electron microscopy demonstrated the presence of continuously distributed cells along the vessel wall, which was also confirmed by 3D reconstruction of z-stack images showing the continuity of endothelial cell coverage inside the vessels. Notably, the detection of fenestrae in the endothelium of glomerular capillaries but not in the vascular capillaries was clear evidence of site-specific endothelial cell specialisation.


Asunto(s)
Riñón/química , Neovascularización Fisiológica/genética , Organoides/crecimiento & desarrollo , Ingeniería de Tejidos , Andamios del Tejido/química , Animales , Vasos Sanguíneos/química , Vasos Sanguíneos/crecimiento & desarrollo , Diferenciación Celular/genética , Células Endoteliales/citología , Células Endoteliales/metabolismo , Endotelio/química , Endotelio/crecimiento & desarrollo , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Riñón/crecimiento & desarrollo , Organoides/química , Ratas
5.
Sci Rep ; 5: 8826, 2015 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-25744951

RESUMEN

Acute kidney injury (AKI) is one of the most relevant health issues, leading to millions of deaths. The magnitude of the phenomenon remarks the urgent need for innovative and effective therapeutic approaches. Cell-based therapy with renal progenitor cells (RPCs) has been proposed as a possible strategy. Studies have shown the feasibility of directing embryonic stem cells or induced Pluripotent Stem Cells (iPSCs) towards nephrogenic intermediate mesoderm and metanephric mesenchyme (MM). However, the functional activity of iPSC-derived RPCs has not been tested in animal models of kidney disease. Here, through an efficient inductive protocol, we directed human iPSCs towards RPCs that robustly engrafted into damaged tubuli and restored renal function and structure in cisplatin-mice with AKI. These results demonstrate that iPSCs are a valuable source of engraftable cells with regenerative activity for kidney disease and create the basis for future applications in stem cell-based therapy.


Asunto(s)
Lesión Renal Aguda/terapia , Células Madre Pluripotentes Inducidas/citología , Riñón/citología , Trasplante de Células Madre , Células Madre/citología , Animales , Técnicas de Cultivo de Célula , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Línea Celular , Modelos Animales de Enfermedad , Femenino , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Células Madre/efectos de los fármacos , Células Madre/metabolismo
6.
Blood ; 109(8): 3552-9, 2007 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-17192393

RESUMEN

X-linked sideroblastic anemia with ataxia (XLSA/A) is caused by defects of the transporter ABCB7 and is characterized by mitochondrial iron deposition and excess of protoporphyrin in erythroid cells. We describe ABCB7 silencing in HeLa cells by performing sequential transfections with siRNAs. The phenotype of the ABCB7-deficient cells was characterized by a strong reduction in proliferation rate that was not rescued by iron supplementation, by evident signs of iron deficiency, and by a large approximately 6-fold increase of iron accumulation in the mitochondria that was poorly available to mitochondrial ferritin. The cells showed an increase of protoporphyrin IX, a higher sensitivity to H(2)O(2) toxicity, and a reduced activity of mitochondrial superoxide dismutase 2 (SOD2), while the activity of mitochondrial enzymes, such as citrate synthase or succinate dehydrogenase, and ATP content were not decreased. In contrast, aconitase activity, particularly that of the cytosolic, IRP1 form, was reduced. The results support the hypothesis that ABCB7 is involved in the transfer of iron from mitochondria to cytosol, and in the maturation of cytosolic Fe/S enzymes. In addition, the results indicate that anemia in XLSA/A is caused by the accumulation of iron in a form that is not readily usable for heme synthesis.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Anemia Ferropénica/genética , Anemia Sideroblástica/genética , Ataxia/genética , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Sobrecarga de Hierro/genética , Mitocondrias/genética , Interferencia de ARN , Transportadoras de Casetes de Unión a ATP/antagonistas & inhibidores , Anemia Ferropénica/metabolismo , Anemia Sideroblástica/metabolismo , Ataxia/metabolismo , Transporte Biológico/genética , Citoplasma/genética , Citoplasma/metabolismo , Enfermedades Genéticas Ligadas al Cromosoma X/metabolismo , Células HeLa , Hemo/biosíntesis , Hemo/genética , Humanos , Hierro/metabolismo , Sobrecarga de Hierro/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Fenotipo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología
7.
Blood Cells Mol Dis ; 35(2): 177-81, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16009582

RESUMEN

Hepcidin is a small peptide that acts as a regulator of systemic iron homeostasis. To study some of its functional properties, a synthetic cDNA for the minimal, 20-amino-acid, form of human hepcidin was cloned into different constructs for expression in Escherichia coli. The fusion ferritin-hepcidin produced molecules retaining most of ferritin structural and functional properties, including ferroxidase and iron incorporation activities. However, it showed spectroscopic properties compatible with the presence of iron-sulfur complexes on the hepcidin moiety, which was buried into protein cavity. Similar complexes were reconstituted by in vitro incubation of the iron-free protein with iron and sulfide salts. Two other unrelated fusion products were constructed, which, when expressed in E. coli, formed insoluble aggregates retaining a large proportion of total bacterial iron. Analysis of the solubilized preparations showed them to contain iron-sulfur complexes. We concluded that the cysteine-rich hepcidin acts as an iron-sequestering molecule during expression in E. coli. This may have implications for the biological functions of this key protein of iron metabolism.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/genética , Péptidos Catiónicos Antimicrobianos/fisiología , Hierro/metabolismo , Proteínas de Hierro no Heme/fisiología , Péptidos Catiónicos Antimicrobianos/aislamiento & purificación , Clonación Molecular/métodos , Escherichia coli/genética , Ferritinas/genética , Hepcidinas , Humanos , Proteínas de Hierro no Heme/genética , Proteínas Recombinantes de Fusión , Proteínas Recombinantes , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA