Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Diabetologia ; 59(1): 187-196, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26515423

RESUMEN

AIMS/HYPOTHESIS: Non-shivering thermogenesis in adipose tissue can be activated by excessive energy intake or following cold exposure. The molecular mechanisms regulating this activation have not been fully elucidated. The Janus kinase (JAK) - signal transducer and activator of transcription (STAT) pathway mediates the signal transduction of numerous hormones and growth factors that regulate adipose tissue development and function, and may play a role in adaptive thermogenesis. METHODS: We analysed mRNA and protein levels of uncoupling protein 1 (UCP1) and JAK2 in different adipose depots in response to metabolic and thermal stress. The in vivo role of JAK2 in adaptive thermogenesis was examined using mice with adipocyte-specific Jak2 deficiency (A-Jak2 KO). RESULTS: We show in murine brown adipose tissue (BAT) that JAK2 is upregulated together with UCP1 in response to high-fat diet (HFD) feeding and cold exposure. In contrast to white adipose tissue, where JAK2 was dispensable for UCP1 induction, we identified an essential role for BAT JAK2 in diet- and cold-induced thermogenesis via mediating the thermogenic response to ß-adrenergic stimulation. Accordingly, A-Jak2 KO mice were unable to upregulate BAT UCP1 following a HFD or after cold exposure. Therefore, A-Jak2 KO mice were cold intolerant and susceptible to HFD-induced obesity and diabetes. CONCLUSIONS/INTERPRETATION: Taken together, our results suggest that JAK2 plays a critical role in BAT function and adaptive thermogenesis. Targeting the JAK-STAT pathway may be a novel therapeutic approach for the treatment of obesity and related metabolic disorders.


Asunto(s)
Tejido Adiposo Pardo/fisiología , Janus Quinasa 2/metabolismo , Termogénesis , Adipocitos/citología , Adipogénesis , Tejido Adiposo Blanco/fisiología , Adiposidad , Animales , Dieta Alta en Grasa , Femenino , Insulina/fisiología , Canales Iónicos/fisiología , Janus Quinasa 1/fisiología , Ratones , Ratones Noqueados , Proteínas Mitocondriales/fisiología , Regiones Promotoras Genéticas , ARN Mensajero/metabolismo , Factor de Transcripción STAT1/fisiología , Transducción de Señal , Proteína Desacopladora 1 , Regulación hacia Arriba
2.
Diabetes ; 72(12): 1751-1765, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37699387

RESUMEN

Caspases are cysteine-aspartic proteases that were initially discovered to play a role in apoptosis. However, caspase 8, in particular, also has additional nonapoptotic roles, such as in inflammation. Adipocyte cell death and inflammation are hypothesized to be initiating pathogenic factors in type 2 diabetes. Here, we examined the pleiotropic role of caspase 8 in adipocytes and obesity-associated insulin resistance. Caspase 8 expression was increased in adipocytes from mice and humans with obesity and insulin resistance. Treatment of 3T3-L1 adipocytes with caspase 8 inhibitor Z-IETD-FMK decreased both death receptor-mediated signaling and targets of nuclear factor κ-light-chain-enhancer of activated B (NF-κB) signaling. We generated novel adipose tissue and adipocyte-specific caspase 8 knockout mice (aP2Casp8-/- and adipoqCasp8-/-). Both males and females had improved glucose tolerance in the setting of high-fat diet (HFD) feeding. Knockout mice also gained less weight on HFD, with decreased adiposity, adipocyte size, and hepatic steatosis. These mice had decreased adipose tissue inflammation and decreased activation of canonical and noncanonical NF-κB signaling. Furthermore, they demonstrated increased energy expenditure, core body temperature, and UCP1 expression. Adipocyte-specific activation of Ikbkb or housing mice at thermoneutrality attenuated improvements in glucose tolerance. These data demonstrate an important role for caspase 8 in mediating adipocyte cell death and inflammation to regulate glucose and energy homeostasis. ARTICLE HIGHLIGHTS: Caspase 8 is increased in adipocytes from mice and humans with obesity and insulin resistance. Knockdown of caspase 8 in adipocytes protects mice from glucose intolerance and weight gain on a high-fat diet. Knockdown of caspase 8 decreases Fas signaling, as well as canonical and noncanonical nuclear factor κ-light-chain-enhancer of activated B (NF-κB) signaling in adipose tissue. Improved glucose tolerance occurs via reduced activation of NF-κB signaling and via induction of UCP1 in adipocytes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Humanos , Masculino , Femenino , Animales , Ratones , FN-kappa B/metabolismo , Resistencia a la Insulina/genética , Caspasa 8/genética , Caspasa 8/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Ratones Noqueados , Adipocitos/metabolismo , Obesidad/genética , Obesidad/metabolismo , Dieta Alta en Grasa/efectos adversos , Inflamación/metabolismo , Glucosa/metabolismo , Apoptosis/genética
3.
Trends Endocrinol Metab ; 29(1): 55-65, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29191719

RESUMEN

The Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway is crucial for transducing signals from a variety of metabolically relevant hormones and cytokines including growth hormone, leptin, erythropoietin, IL4, IL6 and IFNγ. A growing body of evidence suggests that this pathway is dysregulated in the context of obesity and metabolic disease. Recent development of animal models has been instrumental in identifying the role of JAK/STAT signaling in the peripheral metabolic organs including adipose, liver, muscle, pancreas, and the immune system. In this review we summarize current knowledge about the function of JAK/STAT proteins in the regulation of metabolism, and highlight new potential therapeutic targets for the treatment of obesity and diabetes.


Asunto(s)
Diabetes Mellitus/metabolismo , Quinasas Janus/metabolismo , Síndrome Metabólico/metabolismo , Obesidad/metabolismo , Factores de Transcripción STAT/metabolismo , Transducción de Señal/fisiología , Animales , Diabetes Mellitus/inmunología , Diabetes Mellitus/terapia , Humanos , Síndrome Metabólico/inmunología , Síndrome Metabólico/terapia , Obesidad/inmunología , Obesidad/terapia
4.
Sci Rep ; 7(1): 7653, 2017 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-28794431

RESUMEN

During obesity, macrophages can infiltrate metabolic tissues, and contribute to chronic low-grade inflammation, and mediate insulin resistance and diabetes. Recent studies have elucidated the metabolic role of JAK2, a key mediator downstream of various cytokines and growth factors. Our study addresses the essential role of macrophage JAK2 in the pathogenesis to obesity-associated inflammation and insulin resistance. During high-fat diet (HFD) feeding, macrophage-specific JAK2 knockout (M-JAK2-/-) mice gained less body weight compared to wildtype littermate control (M-JAK2+/+) mice and were protected from HFD-induced systemic insulin resistance. Histological analysis revealed smaller adipocytes and qPCR analysis showed upregulated expression of some adipogenesis markers in visceral adipose tissue (VAT) of HFD-fed M-JAK2-/- mice. There were decreased crown-like structures in VAT along with reduced mRNA expression of some macrophage markers and chemokines in liver and VAT of HFD-fed M-JAK2-/- mice. Peritoneal macrophages from M-JAK2-/- mice and Jak2 knockdown in macrophage cell line RAW 264.7 also showed lower levels of chemokine expression and reduced phosphorylated STAT3. However, leptin-dependent effects on augmenting chemokine expression in RAW 264.7 cells did not require JAK2. Collectively, our findings show that macrophage JAK2 deficiency improves systemic insulin sensitivity and reduces inflammation in VAT and liver in response to metabolic stress.


Asunto(s)
Dieta Alta en Grasa , Inflamación/etiología , Janus Quinasa 2/deficiencia , Macrófagos/metabolismo , Adipocitos/metabolismo , Adipocitos/patología , Animales , Quimiocinas/genética , Quimiocinas/metabolismo , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Expresión Génica , Hipertrofia , Inflamación/metabolismo , Inflamación/patología , Resistencia a la Insulina/genética , Grasa Intraabdominal/metabolismo , Hígado/metabolismo , Macrófagos/inmunología , Masculino , Ratones , Ratones Noqueados , Células Mieloides/inmunología , Células Mieloides/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA