Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 487(7408): 496-9, 2012 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-22763436

RESUMEN

Tissue development and regeneration depend on cell-cell interactions and signals that target stem cells and their immediate progeny. However, the cellular behaviours that lead to a properly regenerated tissue are not well understood. Using a new, non-invasive, intravital two-photon imaging approach we study physiological hair-follicle regeneration over time in live mice. By these means we have monitored the behaviour of epithelial stem cells and their progeny during physiological hair regeneration and addressed how the mesenchyme influences their behaviour. Consistent with earlier studies, stem cells are quiescent during the initial stages of hair regeneration, whereas the progeny are more actively dividing. Moreover, stem cell progeny divisions are spatially organized within follicles. In addition to cell divisions, coordinated cell movements of the progeny allow the rapid expansion of the hair follicle. Finally, we show the requirement of the mesenchyme for hair regeneration through targeted cell ablation and long-term tracking of live hair follicles. Thus, we have established an in vivo approach that has led to the direct observation of cellular mechanisms of growth regulation within the hair follicle and that has enabled us to precisely investigate functional requirements of hair-follicle components during the process of physiological regeneration.


Asunto(s)
Folículo Piloso/citología , Regeneración/fisiología , Células Madre/citología , Animales , División Celular , Movimiento Celular , Supervivencia Celular , Rastreo Celular , Dermis/citología , Terapia por Láser , Mesodermo/citología , Ratones , Ratones Transgénicos , Microscopía de Fluorescencia por Excitación Multifotónica
2.
Science ; 343(6177): 1353-6, 2014 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-24653033

RESUMEN

Wnt/ß-catenin signaling is critical for tissue regeneration. However, it is unclear how ß-catenin controls stem cell behaviors to coordinate organized growth. Using live imaging, we show that activation of ß-catenin specifically within mouse hair follicle stem cells generates new hair growth through oriented cell divisions and cellular displacement. ß-Catenin activation is sufficient to induce hair growth independently of mesenchymal dermal papilla niche signals normally required for hair regeneration. Wild-type cells are co-opted into new hair growths by ß-catenin mutant cells, which non-cell autonomously activate Wnt signaling within the neighboring wild-type cells via Wnt ligands. This study demonstrates a mechanism by which Wnt/ß-catenin signaling controls stem cell-dependent tissue growth non-cell autonomously and advances our understanding of the mechanisms that drive coordinated regeneration.


Asunto(s)
Folículo Piloso/citología , Folículo Piloso/metabolismo , Cabello/crecimiento & desarrollo , Células Madre/metabolismo , Vía de Señalización Wnt , beta Catenina/metabolismo , Animales , Diferenciación Celular , División Celular , Ligandos , Ratones , Modelos Biológicos , Mutación , Nicho de Células Madre , Células Madre/citología , Tamoxifeno/farmacología , Regulación hacia Arriba , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , beta Catenina/genética
3.
J Vis Exp ; (31)2009 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-19749688

RESUMEN

Certain fundamental questions in the field of developmental biology can only be answered when cells are placed in novel environments or when small groups of cells in a larger context are altered. Watching how one cell interacts with and behaves in a unique environment is essential to characterizing cell functions. Determining how the localized misexpression of a specific protein influences surrounding cells provides insightful information on the roles that protein plays in a variety of developmental processes. Our lab uses the zebrafish model system to uniquely combine genetic approaches with classical transplantation techniques to generate genotypic or phenotypic chimeras. We study neuron-glial cell interactions during the formation of forebrain commissures in zebrafish. This video describes a method that allows our lab to investigate the role of astroglial populations in the diencephalon and the roles of specific guidance cues that influence projecting axons as they cross the midline. Due to their transparency zebrafish embryos are ideal models for this type of ectopic cell placement or localized gene misexpression. Tracking transplanted cells can be accomplished using a vital dye or a transgenic fish line expressing a fluorescent protein. We demonstrate here how to prepare donor embryos with a vital dye tracer for transplantation, as well as how to extract and transplant cells from one gastrula staged embryo to another. We present data showing ectopic GFP+ transgenic cells within the forebrain of zebrafish embryos and characterize the location of these cells with respect to forebrain commissures. In addition, we show laser scanning confocal timelapse microscopy of Alexa 594 labeled cells transplanted into a GFP+ transgenic host embryo. These data provide evidence that gastrula staged transplantation enables the targeted positioning of ectopic cells to address a variety of questions in Developmental Biology.


Asunto(s)
Trasplante de Células/métodos , Transferencia de Embrión/métodos , Gástrula/citología , Pez Cebra/embriología , Animales , Embrión no Mamífero/trasplante , Colorantes Fluorescentes/química , Colorantes Fluorescentes/metabolismo , Gástrula/metabolismo , Microinyecciones/métodos , Microscopía Confocal , Compuestos Orgánicos/química , Compuestos Orgánicos/metabolismo , Quimera por Trasplante/embriología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA