Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Virol ; 95(10)2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33627397

RESUMEN

Human coronaviruses (HCoV) are respiratory pathogens which have been known since the 1960's. In December 2019, a new betacoronavirus, SARS-CoV-2, was reported and is responsible for one of the biggest pandemics of the last two centuries. Similar to the HCoV-OC43 strain, available evidence suggests SARS-CoV-2 neuroinvasion associated with potential neurological disorders. Coronavirus infection of the central nervous system (CNS) is largely controlled by a viral factor, the spike glycoprotein (S) and a host factor, innate immunity. However, the interaction between these two factors remains elusive. Proteolytic cleavage of the S protein can occur at the interface between receptor binding (S1) and fusion (S2) domains (S1/S2), as well as in a position adjacent to a fusion peptide within S2 (S2'). Herein, using HCoV-OC43 as a surrogate for SARS-CoV-2, we report that both S protein sites are involved in neurovirulence and are required for optimal CNS infection. Whereas efficient cleavage at S1/S2 is associated with decreased virulence, the potentially cleavable putative S2' site is essential for efficient viral infection. Furthermore, type 1 interferon (IFN 1)-related innate immunity also plays an important role in the control of viral spread towards the spinal cord, by preventing infection of ependymal cells. Our results underline the link between the differential S cleavage and IFN 1 in the prevention of viral spread, to control the severity of infection and pathology in both immunocompetent and immunodeficient mice. Taken together, these results point towards two potential therapeutic anti-viral targets: cleavage of the S protein in conjunction with efficient IFN 1-related innate immunity to prevent or at least reduce neuroinvasion, neural spread, and potential associated neurovirulence of human coronaviruses.ImportanceHuman coronaviruses (HCoV) are recognized respiratory pathogens. The emergence of the novel pathogenic member of this family in December 2019 (SARS-CoV-2, which causes COVID-19) poses a global health emergency. As with other coronaviruses reported previously, invasion of the human central nervous system (CNS), associated with diverse neurological disorders, was suggested for SARS-CoV-2. Herein, using the related HCoV-OC43 strain, we show that the viral spike protein constitutes a major neurovirulence factor and that type 1 interferon (IFN 1), in conjunction with cleavage of S protein by host proteases, represent important host factors that participate in the control of CNS infection.To our knowledge, this is the first demonstration of a direct link between cleavage of the S protein, innate immunity and neurovirulence. Understanding mechanisms of viral infection and spread in neuronal cells is essential to better design therapeutic strategies, and to prevent infection by human coronaviruses such as SARS-CoV-2 in human CNS especially in the vulnerable populations such as the elderly and immune-compromised individuals.

2.
J Med Virol ; 94(3): 985-993, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34672374

RESUMEN

The objective of this study was to validate the use of spring water gargle (SWG) as an alternative to oral and nasopharyngeal swab (ONPS) for SARS-CoV-2 detection with a laboratory-developed test. Healthcare workers and adults from the general population, presenting to one of two COVID-19 screening clinics in Montréal and Québec City, were prospectively recruited to provide a gargle sample in addition to the standard ONPS. The paired specimens were analyzed using thermal lysis followed by a laboratory-developed nucleic acid amplification test (LD-NAAT) to detect SARS-CoV-2, and comparative performance analysis was performed. An individual was considered infected if a positive result was obtained on either sample. A total of 1297 adult participants were recruited. Invalid results (n = 18) were excluded from the analysis. SARS-CoV-2 was detected in 144/1279 (11.3%) participants: 126 from both samples, 15 only from ONPS, and 3 only from SWG. Overall, the sensitivity was 97.9% (95% CI: 93.7-99.3) for ONPS and 89.6% (95% CI: 83.4-93.6; p = 0.005) for SWG. The mean ONPS cycle threshold (Ct ) value was significantly lower for the concordant paired samples as compared to discordant ones (22.9 vs. 32.1; p < 0.001). In conclusion, using an LD-NAAT with thermal lysis, SWG is a less sensitive sampling method than the ONPS. However, the higher acceptability of SWG might enable a higher rate of detection from a population-based perspective. Nonetheless, in patients with a high clinical suspicion of COVID-19, a repeated analysis with ONPS should be considered. The sensitivity of SWG using NAAT preceded by chemical extraction should be evaluated.


Asunto(s)
COVID-19 , Manantiales Naturales , Adulto , COVID-19/diagnóstico , Humanos , Antisépticos Bucales , Nasofaringe , SARS-CoV-2/genética , Saliva , Manejo de Especímenes/métodos , Agua
3.
Virologie (Montrouge) ; 26(4): 283-302, 2022 07 01.
Artículo en Francés | MEDLINE | ID: mdl-36120969

RESUMEN

For a large proportion of mankind, the word coronavirus only became a reality in the year 2020, as it was the cause of one of the worst pandemics of the last two centuries. Nevertheless, well before this ominous moment, human coronaviruses (HCoV) were well characterized respiratory pathogens since the 1960s. The most recent discovery of SARS-CoV and MERS-CoV showed that coronaviruses have a pandemic potential with important consequences. With the COVID-19 pandemic caused by SARS-CoV-2, this potential is now certain. Moreover, accumulating evidence support an association between coronaviruses and extra-respiratory pathologies, in particular of the central and peripheral nervous system. Linked or not with a neuro-invasive and neurotropic potential, it is now clear that coronaviruses can be associated with the development of neurological disorders.


Pour une grande partie de l'humanité, le terme coronavirus n'est devenu réalité qu'au début de l'année 2020, associé à une des plus importantes pandémies des deux derniers siècles. Pourtant, bien avant ce moment fatidique, les coronavirus humains (HCoV) étaient bien caractérisés en tant que pathogènes respiratoires depuis la fin des années 1960. Depuis le début du XXIe siècle, deux autres coronavirus pouvant infecter l'humain (SARS-CoV et MERS-CoV), ont montré que ces virus avaient un potentiel pandémique pouvant entraîner des conséquences importantes. Avec la survenue de la pandémie de Covid-19 créée par le SARS-CoV-2, ce potentiel ne fait aujourd'hui plus aucun doute. De plus, un nombre grandissant d'études supporte l'idée d'une association entre les coronavirus et diverses pathologies extra-respiratoires, en particulier au niveau des systèmes nerveux central et périphérique. Liés ou non à un véritable potentiel neuro-invasif et neurotrope, il apparaît maintenant de façon claire que les coronavirus peuvent être associés au développement de divers désordres neurologiques.


Asunto(s)
COVID-19 , Resfriado Común , Humanos , Coronavirus del Síndrome Respiratorio de Oriente Medio/fisiología , Pandemias , SARS-CoV-2
4.
J Virol ; 92(17)2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29925652

RESUMEN

Human coronaviruses (HCoVs) are recognized respiratory pathogens for which accumulating evidence indicates that in vulnerable patients the infection can cause more severe pathologies. HCoVs are not always confined to the upper respiratory tract and can invade the central nervous system (CNS) under still unclear circumstances. HCoV-induced neuropathologies in humans are difficult to diagnose early enough to allow therapeutic interventions. Making use of our already described animal model of HCoV neuropathogenesis, we describe the route of neuropropagation from the nasal cavity to the olfactory bulb and piriform cortex and then the brain stem. We identified neuron-to-neuron propagation as one underlying mode of virus spreading in cell culture. Our data demonstrate that both passive diffusion of released viral particles and axonal transport are valid propagation strategies used by the virus. We describe for the first time the presence along axons of viral platforms whose static dynamism is reminiscent of viral assembly sites. We further reveal that HCoV OC43 modes of propagation can be modulated by selected HCoV OC43 proteins and axonal transport. Our work, therefore, identifies processes that may govern the severity and nature of HCoV OC43 neuropathogenesis and will make possible the development of therapeutic strategies to prevent occurrences.IMPORTANCE Coronaviruses may invade the CNS, disseminate, and participate in the induction of neurological diseases. Their neuropathogenicity is being increasingly recognized in humans, and the presence and persistence of human coronaviruses (HCoV) in human brains have been proposed to cause long-term sequelae. Using our mouse model relying on natural susceptibility to HCoV OC43 and neuronal cell cultures, we have defined the most relevant path taken by HCoV OC43 to access and spread to and within the CNS toward the brain stem and spinal cord and studied in cell culture the underlying modes of intercellular propagation to better understand its neuropathogenesis. Our data suggest that axonal transport governs HCoV OC43 egress in the CNS, leading to the exacerbation of neuropathogenesis. Exploiting knowledge on neuroinvasion and dissemination will enhance our ability to control viral infection within the CNS, as it will shed light on underlying mechanisms of neuropathogenesis and uncover potential druggable molecular virus-host interfaces.


Asunto(s)
Axones/metabolismo , Infecciones por Coronavirus/virología , Coronavirus Humano OC43/fisiología , Animales , Axones/virología , Infecciones por Coronavirus/metabolismo , Humanos , Ratones , Cavidad Nasal/metabolismo , Cavidad Nasal/virología , Bulbo Olfatorio/metabolismo , Bulbo Olfatorio/virología , Corteza Piriforme/metabolismo , Corteza Piriforme/virología , Proteínas Virales/metabolismo , Ensamble de Virus
5.
J Virol ; 91(1)2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-27795420

RESUMEN

Human coronaviruses (HCoV) are respiratory pathogens with neuroinvasive, neurotropic, and neurovirulent properties, highlighting the importance of studying the potential implication of these viruses in neurological diseases. The OC43 strain (HCoV-OC43) was reported to induce neuronal cell death, which may participate in neuropathogenesis. Here, we show that HCoV-OC43 harboring two point mutations in the spike glycoprotein (rOC/Us183-241) was more neurovirulent than the wild-type HCoV-OC43 (rOC/ATCC) in mice and induced more cell death in murine and human neuronal cells. To evaluate the role of regulated cell death (RCD) in HCoV-OC43-mediated neural pathogenesis, we determined if knockdown of Bax, a key regulator of apoptosis, or RIP1, a key regulator of necroptosis, altered the percentage of neuronal cell death following HCoV-OC43 infection. We found that Bax-dependent apoptosis did not play a significant role in RCD following infection, as inhibition of Bax expression mediated by RNA interference did not confer cellular protection against the cell death process. On the other hand, we demonstrated that RIP1 and MLKL were involved in neuronal cell death, as RIP1 knockdown and chemical inhibition of MLKL significantly increased cell survival after infection. Taken together, these results indicate that RIP1 and MLKL contribute to necroptotic cell death after HCoV-OC43 infection to limit viral replication. However, this RCD could lead to neuronal loss in the mouse CNS and accentuate the neuroinflammation process, reflecting the severity of neuropathogenesis. IMPORTANCE: Because they are naturally neuroinvasive and neurotropic, human coronaviruses are suspected to participate in the development of neurological diseases. Given that the strain OC43 is neurovirulent in mice and induces neuronal cell death, we explored the neuronal response to infection by characterizing the activation of RCD. Our results revealed that classical apoptosis associated with the Bax protein does not play a significant role in HCoV-OC43-induced neuronal cell death and that RIP1 and MLKL, two cellular proteins usually associated with necroptosis (an RCD back-up system when apoptosis is not adequately induced), both play a pivotal role in the process. As necroptosis disrupts cellular membranes and allows the release of damage-associated molecular patterns (DAMP) and possibly induces the production of proinflammatory cytokines, it may represent a proinflammatory cell death mechanism that contributes to excessive neuroinflammation and neurodegeneration and eventually to neurological disorders after a coronavirus infection.


Asunto(s)
Infecciones por Coronavirus/genética , Coronavirus Humano OC43/patogenicidad , Proteínas Activadoras de GTPasa/genética , Interacciones Huésped-Patógeno , Proteínas Quinasas/genética , Glicoproteína de la Espiga del Coronavirus/genética , Animales , Muerte Celular , Línea Celular , Línea Celular Tumoral , Infecciones por Coronavirus/metabolismo , Infecciones por Coronavirus/mortalidad , Infecciones por Coronavirus/virología , Coronavirus Humano OC43/genética , Coronavirus Humano OC43/metabolismo , Embrión de Mamíferos , Femenino , Proteínas Activadoras de GTPasa/metabolismo , Regulación de la Expresión Génica , Humanos , Ratones , Ratones Endogámicos BALB C , Mutación , Neuronas/patología , Neuronas/virología , Cultivo Primario de Células , Proteínas Quinasas/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Glicoproteína de la Espiga del Coronavirus/metabolismo , Análisis de Supervivencia , Virulencia , Proteína X Asociada a bcl-2/antagonistas & inhibidores , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo
6.
PLoS Pathog ; 11(11): e1005261, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26545254

RESUMEN

Human coronaviruses (HCoV) are respiratory pathogens that may be associated with the development of neurological diseases, in view of their neuroinvasive and neurotropic properties. The viral spike (S) glycoprotein is a major virulence factor for several coronavirus species, including the OC43 strain of HCoV (HCoV-OC43). In an attempt to study the role of this protein in virus spread within the central nervous system (CNS) and neurovirulence, as well as to identify amino acid residues important for such functions, we compared the sequence of the S gene found in the laboratory reference strain HCoV-OC43 ATCC VR-759 to S sequences of viruses detected in clinical isolates from the human respiratory tract. We identified one predominant mutation at amino acid 758 (from RRSR↓ G758 to RRSR↓R758), which introduces a putative furin-like cleavage (↓) site. Using a molecular cDNA infectious clone to generate a corresponding recombinant virus, we show for the first time that such point mutation in the HCoV-OC43 S glycoprotein creates a functional cleavage site between the S1 and S2 portions of the S protein. While the corresponding recombinant virus retained its neuroinvasive properties, this mutation led to decreased neurovirulence while potentially modifying the mode of virus spread, likely leading to a limited dissemination within the CNS. Taken together, these results are consistent with the adaptation of HCoV-OC43 to the CNS environment, resulting from the selection of quasi-species harboring mutations that lead to amino acid changes in viral genes, like the S gene in HCoV-OC43, which may contribute to a more efficient establishment of a less pathogenic but persistent CNS infection. This adaptative mechanism could potentially be associated with human encephalitis or other neurological degenerative pathologies.


Asunto(s)
Enfermedades del Sistema Nervioso Central/virología , Infecciones por Coronavirus/virología , Coronavirus Humano OC43/patogenicidad , Proproteína Convertasas/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Animales , Coronavirus Humano OC43/aislamiento & purificación , Coronavirus Humano OC43/fisiología , Glicoproteínas/metabolismo , Humanos , Ratones , Virulencia
8.
Antimicrob Agents Chemother ; 60(9): 5492-503, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27381385

RESUMEN

Human coronaviruses (HCoVs) cause 15 to 30% of mild upper respiratory tract infections. However, no specific antiviral drugs are available to prevent or treat HCoV infections to date. Here, we developed four infectious recombinant HCoVs-OC43 (rHCoVs-OC43) which express the Renilla luciferase (Rluc) reporter gene. Among these four rHCoVs-OC43, rOC43-ns2DelRluc (generated by replacing ns2 with the Rluc gene) showed robust luciferase activity with only a slight impact on its growth characteristics. Additionally, this recombinant virus remained stable for at least 10 passages in BHK-21 cells. rOC43-ns2DelRluc was comparable to its parental wild-type virus (HCoV-OC43-WT) with respect to the quantity of the antiviral activity of chloroquine and ribavirin. We showed that chloroquine strongly inhibited HCoV-OC43 replication in vitro, with a 50% inhibitory concentration (IC50) of 0.33 µM. However, ribavirin showed inhibition of HCoV-OC43 replication only at high concentrations which may not be applicable to humans in clinical treatment, with an IC50 of 10 µM. Furthermore, using a luciferase-based small interfering RNA (siRNA) screening assay, we identified double-stranded-RNA-activated protein kinase (PKR) and DEAD box RNA helicases (DDX3X) that exhibited antiviral activities, which were further verified by the use of HCoV-OC43-WT. Therefore, rOC43-ns2DelRluc represents a promising safe and sensitive platform for high-throughput antiviral screening and quantitative analysis of viral replication.


Asunto(s)
Antivirales/farmacología , Infecciones por Coronavirus/tratamiento farmacológico , Coronavirus Humano OC43/efectos de los fármacos , Coronavirus Humano OC43/genética , Genes Reporteros/genética , Luciferasas/genética , Línea Celular , Cloroquina/farmacología , Células HEK293 , Humanos , Infecciones del Sistema Respiratorio/tratamiento farmacológico , Infecciones del Sistema Respiratorio/virología , Ribavirina/farmacología , Replicación Viral/efectos de los fármacos
9.
J Virol ; 88(3): 1548-63, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24227863

RESUMEN

Human coronaviruses (HCoVs) are recognized respiratory pathogens with neuroinvasive and neurotropic properties in mice and humans. HCoV strain OC43 (HCoV-OC43) can infect and persist in human neural cells and activate neuroinflammatory and neurodegenerative mechanisms, suggesting that it could be involved in neurological disease of unknown etiology in humans. Moreover, we have shown that HCoV-OC43 is neurovirulent in susceptible mice, causing encephalitis, and that a viral mutant with a single point mutation in the viral surface spike (S) protein induces a paralytic disease that involves glutamate excitotoxicity in susceptible mice. Herein, we show that glutamate recycling via the glial transporter 1 protein transporter and glutamine synthetase are central to the dysregulation of glutamate homeostasis and development of motor dysfunctions and paralytic disease in HCoV-OC43-infected mice. Moreover, memantine, an N-methyl-d-aspartate receptor antagonist widely used in the treatment of neurological diseases in humans, improved clinical scores related to paralytic disease and motor disabilities by partially restoring the physiological neurofilament phosphorylation state in virus-infected mice. Interestingly, memantine attenuated mortality rates and body weight loss and reduced HCoV-OC43 replication in the central nervous system in a dose-dependent manner. This novel action of memantine on viral replication strongly suggests that it could be used as an antiviral agent to directly limit viral replication while improving neurological symptoms in various neurological diseases with a viral involvement. Mutations in the surface spike (S) protein of human respiratory coronavirus OC43 appear after persistent infection of human cells of the central nervous system, a possible viral adaptation to this environment. Furthermore, a single amino acid change in the viral S protein modulated virus-induced neuropathology in mice from an encephalitis to a neuropathology characterized by flaccid paralysis, which involves glutamate excitotoxicity. We now show that memantine, a drug that is used for alleviating symptoms associated with neuropathology, such as Alzheimer's disease, can partially restore the physiological state of infected mice by limiting both neurodegeneration and viral replication. This suggests that memantine could be used as an antiviral agent while improving neurological symptoms in various neurological diseases with a viral involvement.


Asunto(s)
Antivirales/administración & dosificación , Enfermedades Virales del Sistema Nervioso Central/tratamiento farmacológico , Infecciones por Coronavirus/tratamiento farmacológico , Coronavirus Humano OC43/efectos de los fármacos , Memantina/administración & dosificación , Animales , Sistema Nervioso Central/virología , Enfermedades Virales del Sistema Nervioso Central/mortalidad , Enfermedades Virales del Sistema Nervioso Central/fisiopatología , Enfermedades Virales del Sistema Nervioso Central/virología , Infecciones por Coronavirus/mortalidad , Infecciones por Coronavirus/fisiopatología , Infecciones por Coronavirus/virología , Coronavirus Humano OC43/genética , Coronavirus Humano OC43/fisiología , Femenino , Ácido Glutámico/metabolismo , Humanos , Ratones , Ratones Endogámicos BALB C , Actividad Motora , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Replicación Viral/efectos de los fármacos
11.
J Virol ; 87(6): 3097-107, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23283955

RESUMEN

Most betacoronaviruses possess an hemagglutinin-esterase (HE) protein, which appears to play a role in binding to or release from the target cell. Since this HE protein possesses an acetyl-esterase activity that removes acetyl groups from O-acetylated sialic acid, a role as a receptor-destroying enzyme has been postulated. However, the precise function of HE and of its enzymatic activity remains poorly understood. Making use of neutralizing antibody and of molecular clones of recombinant human coronavirus OC43 (HCoV-OC43), our results suggest that the HE protein of this HCoV could be associated with infection of target cells and, most notably, is important in the production of infectious viral particles. Indeed, after transfecting BHK-21 cells with various cDNA infectious clones of HCoV-OC43, either lacking the HE protein or bearing an HE protein with a nonfunctional acetyl-esterase enzymatic activity, we were reproducibly unable to detect recombinant infectious viruses compared to the reference infectious HCoV-OC43 clone pBAC-OC43(FL). Complementation experiments, using BHK-21 cells expressing wild-type HE, either transiently or in a stable ectopic expression, demonstrate that this protein plays a very significant role in the production of infectious recombinant coronaviral particles that can subsequently more efficiently infect susceptible epithelial and neuronal cells. Even though the S protein is the main viral factor influencing coronavirus infection of susceptible cells, our results taken together indicate that a functionally active HE protein enhances the infectious properties of HCoV-OC43 and contributes to efficient virus dissemination in cell culture.


Asunto(s)
Coronavirus Humano OC43/enzimología , Coronavirus Humano OC43/fisiología , Hemaglutininas Virales/metabolismo , Proteínas Virales de Fusión/metabolismo , Replicación Viral , Animales , Línea Celular , Coronavirus Humano OC43/genética , Cricetinae , Técnicas de Inactivación de Genes , Prueba de Complementación Genética , Hemaglutininas Virales/genética , Proteínas Virales de Fusión/genética
12.
Adv Exp Med Biol ; 807: 75-96, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24619619

RESUMEN

In humans, viral infections of the respiratory tract are a leading cause of morbidity and mortality worldwide. Several recognized respiratory viral agents have a neuroinvasive capacity since they can spread from the respiratory tract to the central nervous system (CNS). Once there, infection of CNS cells (neurotropism) could lead to human health problems, such as encephalitis and long-term neurological diseases. Among the various respiratory viruses, coronaviruses are important pathogens of humans and animals. Human Coronaviruses (HCoV) usually infect the upper respiratory tract, where they are mainly associated with common colds. However, in more vulnerable populations, such as newborns, infants, the elderly, and immune-compromised individuals, they can also affect the lower respiratory tract, leading to pneumonia, exacerbations of asthma, respiratory distress syndrome, or even severe acute respiratory syndrome (SARS). The respiratory involvement of HCoV has been clearly established since the 1960s. In addition, for almost three decades now, the scientific literature has also demonstrated that HCoV are neuroinvasive and neurotropic and could induce an overactivation of the immune system, in part by participating in the activation of autoreactive immune cells that could be associated with autoimmunity in susceptible individuals. Furthermore, it was shown that in the murine CNS, neurons are the main target of infection, which causes these essential cells to undergo degeneration and eventually die by some form of programmed cell death after virus infection. Moreover, it appears that the viral surface glycoprotein (S) represents an important factor in the neurodegenerative process. Given all these properties, it has been suggested that these recognized human respiratory pathogens could be associated with the triggering or the exacerbation of neurological diseases for which the etiology remains unknown or poorly understood.


Asunto(s)
Enfermedades Virales del Sistema Nervioso Central/virología , Coronavirus/patogenicidad , Infecciones del Sistema Respiratorio/virología , Animales , Apoptosis , Sistema Nervioso Central/virología , Humanos
13.
Virologie (Montrouge) ; 18(1): 5-16, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-32260043

RESUMEN

In humans, viral infections of the respiratory tract are a leading cause of morbidity and mortality worldwide. Among the various respiratory viruses, coronaviruses are important ubiquitous pathogens of humans and animals. Since the late 1960's, human coronaviruses (HCoV) are recognized pathogens of the upper respiratory tract, being mainly associated with mild pathologies such as the common cold. However, in vulnerable populations, (newborns, infants, the elderly and immune-compromised individuals), they can affect the lower respiratory tract, leading to pneumonia, exacerbations of asthma, respiratory distress syndrome or even severe acute respiratory syndrome (SARS). For almost three decades now, the scientific literature has also demonstrated that HCoV are neuroinvasive and neurotropic: neurons are often the target cell in the central nervous system (CNS), inducing neurodegeneration and eventually death. Moreover, HCoV can contribute to an overactivation of the immune system that could lead to autoimmunity in the CNS of susceptible individuals. Given all these properties, it has been suggested that HCoV could be associated with the triggering or the exacerbation of human neurological diseases for which the etiology remains unknown or poorly understood.

14.
J Virol ; 86(1): 81-93, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22013052

RESUMEN

Human coronaviruses (HCoV) are recognized respiratory pathogens. Some HCoV strains, including HCoV-OC43, can invade the central nervous system, where they infect neurons, with unclear consequences. We have previously reported that HCoV-OC43 infection of human neurons activates the unfolded-protein response and caspase-3 and induces cell death and that the viral spike (S) glycoprotein is involved in the process. We now report on underlying mechanisms associated with the induction of programmed cell death (PCD) after infection by the reference HCoV-OC43 virus (rOC/ATCC) and a more neurovirulent and cytotoxic HCoV-OC43 variant harboring two point mutations in the S glycoprotein (rOC/U(S183-241)). Even though caspase-3 and caspase-9 were both activated after infection, the use of caspase inhibitors neither reduced nor delayed virus-induced PCD, suggesting that these proteases are not essential in the process. On the other hand, the proapoptotic proteins BAX, cytochrome c (CytC), and apoptosis-inducing factor (AIF) were relocalized toward the mitochondria, cytosol, and nucleus, respectively, after infection by both virus variants. Moreover, LA-N-5 neuronal cells treated with cyclosporine (CsA), an inhibitor of the mitochondrial permeabilization transition pore (mPTP), or knocked down for cyclophilin D (CypD) were completely protected from rOC/ATCC-induced neuronal PCD, underlining the involvement of CypD in the process. On the other hand, CsA and CypD knockdown had moderate effects on rOC/U(S183-241)-induced PCD. In conclusion, our results are consistent with mitochondrial AIF and cyclophilin D being central in HCoV-OC43-induced PCD, while caspases appear not to be essential.


Asunto(s)
Apoptosis , Caspasa 3/metabolismo , Caspasa 9/metabolismo , Infecciones por Coronavirus/enzimología , Coronavirus Humano OC43/fisiología , Ciclofilinas/metabolismo , Neuronas/citología , Factor Inductor de la Apoptosis/genética , Factor Inductor de la Apoptosis/metabolismo , Caspasa 3/genética , Caspasa 9/genética , Línea Celular , Infecciones por Coronavirus/genética , Infecciones por Coronavirus/fisiopatología , Infecciones por Coronavirus/virología , Coronavirus Humano OC43/genética , Peptidil-Prolil Isomerasa F , Ciclofilinas/genética , Humanos , Neuronas/enzimología , Neuronas/virología
15.
J Virol ; 85(23): 12464-73, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21957311

RESUMEN

Human coronaviruses (HCoV) are recognized respiratory pathogens, and some strains, including HCoV-OC43, can infect human neuronal and glial cells of the central nervous system (CNS) and activate neuroinflammatory mechanisms. Moreover, HCoV-OC43 is neuroinvasive, neurotropic, and neurovirulent in susceptible mice, where it induces chronic encephalitis. Herein, we show that a single point mutation in the viral spike (S) glycoprotein (Y241H), acquired during viral persistence in human neural cells, led to a hind-limb paralytic disease in infected mice. Inhibition of glutamate excitotoxicity using a 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl)propranoic acid (AMPA) receptor antagonist (GYKI-52466) improved clinical scores related to the paralysis and motor disabilities in S mutant virus-infected mice, as well as protected the CNS from neuronal dysfunctions, as illustrated by restoration of the phosphorylation state of neurofilaments. Expression of the glial glutamate transporter GLT-1, responsible for glutamate homeostasis, was downregulated following infection, and GYKI-52466 also significantly restored its steady-state expression level. Finally, GYKI-52466 treatment of S mutant virus-infected mice led to reduced microglial activation, which may lead to improvement in the regulation of CNS glutamate homeostasis. Taken together, our results strongly suggest an involvement of excitotoxicity in the paralysis-associated neuropathology induced by an HCoV-OC43 mutant which harbors a single point mutation in its spike protein that is acquired upon persistent virus infection.


Asunto(s)
Infecciones por Coronavirus/virología , Coronavirus Humano OC43/patogenicidad , Ácido Glutámico/toxicidad , Glicoproteínas de Membrana/genética , Neuroglía/patología , Neuronas/patología , Parálisis/etiología , Mutación Puntual/genética , Proteínas del Envoltorio Viral/genética , Animales , Benzodiazepinas/administración & dosificación , Western Blotting , Infecciones por Coronavirus/genética , Infecciones por Coronavirus/metabolismo , Coronavirus Humano OC43/genética , Antagonistas de Aminoácidos Excitadores/administración & dosificación , Femenino , Ácido Glutámico/metabolismo , Humanos , Técnicas para Inmunoenzimas , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Endogámicos BALB C , Neuroglía/efectos de los fármacos , Neuroglía/virología , Neuronas/efectos de los fármacos , Neuronas/virología , Parálisis/tratamiento farmacológico , Parálisis/metabolismo , Receptores AMPA/antagonistas & inhibidores , Glicoproteína de la Espiga del Coronavirus , Tasa de Supervivencia , Proteínas del Envoltorio Viral/metabolismo
16.
J Virol ; 85(13): 6381-9, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21507972

RESUMEN

Coronaviruses are a family of enveloped single-stranded positive-sense RNA viruses causing respiratory, enteric, and neurologic diseases in mammals and fowl. Human coronaviruses are recognized to cause up to a third of common colds and are suspected to be involved in enteric and neurologic diseases. Coronavirus replication involves the generation of nested subgenomic mRNAs (sgmRNAs) with a common capped 5' leader sequence. The translation of most of the sgmRNAs is thought to be cap dependent and displays a requirement for eukaryotic initiation factor 4F (eIF4F), a heterotrimeric complex needed for the recruitment of 40S ribosomes. We recently reported on an ultrahigh-throughput screen to discover compounds that inhibit eIF4F activity by blocking the interaction of two of its subunits (R. Cencic et al., Proc. Natl. Acad. Sci. U. S. A. 108:1046-1051, 2011). Herein we describe a molecule from this screen that prevents the interaction between eIF4E (the cap-binding protein) and eIF4G (a large scaffolding protein), inhibiting cap-dependent translation. This inhibitor significantly decreased human coronavirus 229E (HCoV-229E) replication, reducing the percentage of infected cells and intra- and extracellular infectious virus titers. Our results support the strategy of targeting the eIF4F complex to block coronavirus infection.


Asunto(s)
Antivirales/farmacología , Coronavirus Humano 229E/fisiología , Factor 4E Eucariótico de Iniciación/antagonistas & inhibidores , Factor 4G Eucariótico de Iniciación/antagonistas & inhibidores , Replicación Viral/efectos de los fármacos , Antivirales/química , Línea Celular , Coronavirus Humano 229E/efectos de los fármacos , Coronavirus Humano 229E/metabolismo , Coronavirus Humano 229E/patogenicidad , Descubrimiento de Drogas , Factor 4E Eucariótico de Iniciación/metabolismo , Factor 4G Eucariótico de Iniciación/metabolismo , Ensayos Analíticos de Alto Rendimiento , Humanos , Biosíntesis de Proteínas/efectos de los fármacos , Caperuzas de ARN/genética , Caperuzas de ARN/metabolismo , Bibliotecas de Moléculas Pequeñas , Proteínas Virales/metabolismo
17.
CMAJ Open ; 10(4): E1027-E1033, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36622324

RESUMEN

BACKGROUND: SARS-CoV-2 transmission has an impact on education. In this study, we assessed the performance of rapid antigen detection tests (RADTs) versus polymerase chain reaction (PCR) for the diagnosis of SARS-CoV-2 infection in school settings, and RADT use for monitoring exposed contacts. METHODS: In this real-world, prospective observational cohort study, high-school students and staff were recruited from 2 high schools in Montréal, Canada, and followed from Jan. 25 to June 10, 2021. Twenty-five percent of asymptomatic participants were tested weekly by RADT (nasal) and PCR (gargle). Class contacts of cases were tested. Symptomatic participants were tested by RADT (nasal) and PCR (nasal and gargle). The number of cases and outbreaks were compared with those of other high schools in the same area. RESULTS: Overall, 2099 students and 286 school staff members consented to participate. The overall specificity of RADTs varied from 99.8% to 100%, with a lower sensitivity, varying from 28.6% in asymptomatic to 83.3% in symptomatic participants. Secondary cases were identified in 10 of 35 classes. Returning students to school after a 7-day quarantine, with a negative PCR result on days 6-7 after exposure, did not lead to subsequent outbreaks. Of cases for whom the source was known, 37 of 51 (72.5%) were secondary to household transmission, 13 (25.5%) to intraschool transmission, and 1 to community contacts between students in the same school. INTERPRETATION: Rapid antigen detection tests did not perform well compared with PCR in asymptomatic individuals. Reinforcing policies for symptom screening when entering schools and testing symptomatic individuals with RADTs on the spot may avoid subsequent substantial exposures in class. Preprint: medRxiv - doi.org/10.1101/2021.10.13.21264960.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Estudios de Cohortes , Sistemas de Atención de Punto , Estudios Prospectivos , COVID-19/diagnóstico , COVID-19/epidemiología
18.
Pathogens ; 10(10)2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34684216

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected more than 231 million people globally, with more than 4.7 million deaths recorded by the World Health Organization as of 26 September 2021. In response to the pandemic, some countries (New Zealand, Vietnam, Taiwan, South Korea and others) have pursued suppression strategies, so-called Zero COVID policies, to drive and maintain infection rates as close to zero as possible and respond aggressively to new cases. In comparison, European countries and North America have adopted mitigation strategies (of varying intensity and effectiveness) that aim primarily to prevent health systems from being overwhelmed. With recent advances in our understanding of SARS-CoV-2 and its biology, and the increasing recognition there is more to COVID-19 beyond the acute infection, we offer a perspective on some of the long-term risks of mutational escape, viral persistence, reinfection, immune dysregulation and neurological and multi-system complications (Long COVID).

19.
J Clin Virol ; 144: 104995, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34619381

RESUMEN

BACKGROUND: Nasopharyngeal swab has long been considered the specimen of choice for the diagnosis of respiratory viral infections, including SARS-CoV-2 infection, but it suffers from several drawbacks: its discomfort limits screening acceptability, and it is vulnerable to shortages in both specialized materials and trained healthcare workers in the context of a pandemic. METHODS: We prospectively compared natural spring water gargle to combined oro-nasopharyngeal swab (ONPS) for the diagnosis of coronavirus disease 2019 (COVID-19) in paired clinical specimens (1005 ONPS and 1005 gargles) collected from 987 unique early symptomatic as well as asymptomatic individuals from the community. RESULTS: Using a direct RT-PCR method with the Allplex™ 2019-nCoV Assay (Seegene), the clinical sensitivity of the gargle was 95.3% (95% confidence interval [CI], 90.2 - 98.3%), similar to the sensitivity of the ONPS (93.8%; 95% CI, 88.2 - 97.3%), despite significantly lower viral RNA concentration in gargles, as reflected by higher cycle threshold values. No single specimen type detected all COVID-19 cases. SARS-CoV-2 RNA was stable in gargles at room temperature for at least 7 days. CONCLUSION: The simplicity of this sampling method coupled with the accessibility of spring water are clear advantages in a pandemic situation where testing frequency, turnaround time and shortage of consumables and trained staff are critical elements.


Asunto(s)
COVID-19 , ARN Viral , Humanos , Nasofaringe , ARN Viral/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , SARS-CoV-2 , Saliva , Manejo de Especímenes , Agua
20.
medRxiv ; 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34545375

RESUMEN

In this study we conducted RNA sequencing on two brain regions (olfactory bulb and amygdala) from subjects who died from COVID-19 or who died of other causes. We found several-fold more transcriptional changes in the olfactory bulb than in the amygdala, consistent with our own work and that of others indicating that the olfactory bulb may be the initial and most common brain region infected. To some extent our results converge with pseudotime analysis towards common processes shared between the brain regions, possibly induced by the systemic immune reaction following SARS-CoV-2 infection. Changes in amygdala emphasized upregulation of interferon-related neuroinflammation genes, as well as downregulation of synaptic and other neuronal genes, and may represent the substrate of reported acute and subacute COVID-19 neurological effects. Additionally, and only in olfactory bulb, we observed an increase in angiogenesis and platelet activation genes, possibly associated with microvascular damages induced by neuroinflammation. Through coexpression analysis we identified two key genes (CAMK2B for the synaptic neuronal network and COL1A2 for the angiogenesis/platelet network) that might be interesting potential targets to reverse the effects induced by SARS-CoV-2 infection. Finally, in olfactory bulb we detected an upregulation of olfactory and taste genes, possibly as a compensatory response to functional deafferentation caused by viral entry into primary olfactory sensory neurons. In conclusion, we were able to identify transcriptional profiles and key genes involved in neuroinflammation, neuronal reaction and olfaction induced by direct CNS infection and/or the systemic immune response to SARS-CoV-2 infection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA