Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Cell ; 161(5): 1074-1088, 2015 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-26000483

RESUMEN

Microbial pathogens infect host cells by delivering virulence factors (effectors) that interfere with defenses. In plants, intracellular nucleotide-binding/leucine-rich repeat receptors (NLRs) detect specific effector interference and trigger immunity by an unknown mechanism. The Arabidopsis-interacting NLR pair, RRS1-R with RPS4, confers resistance to different pathogens, including Ralstonia solanacearum bacteria expressing the acetyltransferase effector PopP2. We show that PopP2 directly acetylates a key lysine within an additional C-terminal WRKY transcription factor domain of RRS1-R that binds DNA. This disrupts RRS1-R DNA association and activates RPS4-dependent immunity. PopP2 uses the same lysine acetylation strategy to target multiple defense-promoting WRKY transcription factors, causing loss of WRKY-DNA binding and transactivating functions needed for defense gene expression and disease resistance. Thus, RRS1-R integrates an effector target with an NLR complex at the DNA to switch a potent bacterial virulence activity into defense gene activation.


Asunto(s)
Arabidopsis/inmunología , Acetiltransferasas/metabolismo , Arabidopsis/microbiología , Proteínas de Arabidopsis/metabolismo , ADN/metabolismo , Modelos Moleculares , Proteínas de Plantas/metabolismo , Ralstonia solanacearum/enzimología , Ralstonia solanacearum/metabolismo , Ralstonia solanacearum/patogenicidad , Factores de Transcripción/metabolismo
2.
Plant J ; 118(3): 839-855, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38271178

RESUMEN

Arabidopsis thaliana WRKY proteins are potential targets of pathogen-secreted effectors. RESISTANT TO RALSTONIA SOLANACEARUM 1 (RRS1; AtWRKY52) is a well-studied Arabidopsis nucleotide-binding and leucine-rich repeat (NLR) immune receptor carrying a C-terminal WRKY domain that functions as an integrated decoy. RRS1-R recognizes the effectors AvrRps4 from Pseudomonas syringae pv. pisi and PopP2 from Ralstonia pseudosolanacearum by direct interaction through its WRKY domain. AvrRps4 and PopP2 were previously shown to interact with several AtWRKYs. However, how these effectors selectively interact with their virulence targets remains unknown. Here, we show that several members of subgroup IIIb of the AtWRKY family are targeted by AvrRps4 and PopP2. We demonstrate that several AtWRKYs induce cell death when transiently expressed in Nicotiana benthamiana, indicating the activation of immune responses. AtWRKY54 was the only cell death-inducing AtWRKY that interacted with both AvrRps4 and PopP2. We found that AvrRps4 and PopP2 specifically suppress AtWRKY54-induced cell death. We also demonstrate that the amino acid residues required for the avirulence function of AvrRps4 and PopP2 are critical for suppressing AtWRKY54-induced cell death. AtWRKY54 residues predicted to form a binding interface with AvrRps4 were predominantly located in the DNA binding domain and necessary for inducing cell death. Notably, one AtWRKY54 residue, E164, contributes to affinity with AvrRps4 and is exclusively present among subgroup IIIb AtWRKYs, yet is located outside of the DNA-binding domain. Surprisingly, AtWRKY54 mutated at E164 evaded AvrRps4-mediated cell death suppression. Taking our observations together, we propose that AvrRp4 and PopP2 specifically target AtWRKY54 to suppress plant immune responses.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas Bacterianas , Nicotiana , Enfermedades de las Plantas , Inmunidad de la Planta , Pseudomonas syringae , Arabidopsis/inmunología , Arabidopsis/genética , Arabidopsis/microbiología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Muerte Celular , Nicotiana/genética , Nicotiana/microbiología , Nicotiana/inmunología , Nicotiana/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/genética , Inmunidad de la Planta/genética , Pseudomonas syringae/patogenicidad , Ralstonia/patogenicidad , Ralstonia/genética , Ralstonia solanacearum/patogenicidad , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
Plant J ; 114(6): 1319-1337, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36932864

RESUMEN

Recent work shed light on how plant intracellular immune receptors of the nucleotide-binding leucine-rich repeat (NLR) family are activated upon pathogen effector recognition to trigger immune responses. Activation of Toll-interleukin-1 receptor (TIR) domain-containing NLRs (TNLs) induces receptor oligomerization and close proximity of the TIR domain, which is required for TIR enzymatic activity. TIR-catalyzed small signaling molecules bind to EDS1 family heterodimers and subsequently activate downstream helper NLRs, which function as Ca2+ permeable channel to activate immune responses eventually leading to cell death. Subcellular localization requirements of TNLs and signaling partners are not well understood, although they are required to understand fully the mechanisms underlying NLR early signaling. TNLs show diverse subcellular localization while EDS1 shows nucleocytosolic localization. Here, we studied the impact of TIR and EDS1 mislocalization on the signaling activation of different TNLs. In Nicotiana benthamiana, our results suggest that close proximity of TIR domains isolated from flax L6 and Arabidopsis RPS4 and SNC1 TNLs drives signaling activation from different cell compartments. Nevertheless, both Golgi-membrane anchored L6 and nucleocytosolic RPS4 have the same requirements for EDS1 subcellular localization in Arabidopsis thaliana. By using mislocalized variants of EDS1, we found that autoimmune L6 and RPS4 TIR domain can induce seedling cell death when EDS1 is present in the cytosol. However, when EDS1 is restricted to the nucleus, both induce a stunting phenotype but no cell death. Our data point out the importance of thoroughly investigating the dynamics of TNLs and signaling partners subcellular localization to understand TNL signaling fully.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Proteínas de Unión al ADN/genética , Arabidopsis/metabolismo , Receptores Inmunológicos/metabolismo , Muerte Celular/genética , Inmunidad de la Planta/genética , Enfermedades de las Plantas
4.
Plant J ; 115(5): 1443-1457, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37248633

RESUMEN

Plant immune receptors, known as NOD-like receptors (NLRs), possess unique integrated decoy domains that enable plants to attract pathogen effectors and initiate a specific immune response. The present study aimed to create a library of these integrated domains (IDs) and screen them with pathogen effectors to identify targets for effector virulence and NLR-effector interactions. This works compiles IDs found in NLRs from seven different plant species and produced a library of 78 plasmid clones containing a total of 104 IDs, representing 43 distinct InterPro domains. A yeast two-hybrid assay was conducted, followed by an in planta interaction test, using 32 conserved effectors from Ralstonia pseudosolanacearum type III. Through these screenings, three interactions involving different IDs (kinase, DUF3542, WRKY) were discovered interacting with two unrelated type III effectors (RipAE and PopP2). Of particular interest was the interaction between PopP2 and ID#85, an atypical WRKY domain integrated into a soybean NLR gene (GmNLR-ID#85). Using a Förster resonance energy transfer-fluorescence lifetime imaging microscopy technique to detect protein-protein interactions in living plant cells, PopP2 was demonstrated to physically associate with ID#85 in the nucleus. However, unlike the known WRKY-containing Arabidopsis RRS1-R NLR receptor, GmNLR-ID#85 could not be acetylated by PopP2 and failed to activate RPS4-dependent immunity when introduced into the RRS1-R immune receptor. The generated library of 78 plasmid clones, encompassing these screenable IDs, is publicly available through Addgene. This resource is expected to be valuable for the scientific community with respect to discovering targets for effectors and potentially engineering plant immune receptors.


Asunto(s)
Proteínas NLR , Proteínas de Plantas , Plantas , Productos Agrícolas , Técnicas del Sistema de Dos Híbridos , Núcleo Celular , Factores de Transcripción , Proteínas NLR/metabolismo , Plantas/metabolismo , Plantas/microbiología , Proteínas de Plantas/metabolismo , Biblioteca de Genes
6.
Proc Natl Acad Sci U S A ; 116(43): 21758-21768, 2019 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-31591240

RESUMEN

Several Bradyrhizobium species nodulate the leguminous plant Aeschynomene indica in a type III secretion system-dependent manner, independently of Nod factors. To date, the underlying molecular determinants involved in this symbiotic process remain unknown. To identify the rhizobial effectors involved in nodulation, we mutated 23 out of the 27 effector genes predicted in Bradyrhizobium strain ORS3257. The mutation of nopAO increased nodulation and nitrogenase activity, whereas mutation of 5 other effector genes led to various symbiotic defects. The nopM1 and nopP1 mutants induced a reduced number of nodules, some of which displayed large necrotic zones. The nopT and nopAB mutants induced uninfected nodules, and a mutant in a yet-undescribed effector gene lost the capacity for nodule formation. This effector gene, widely conserved among bradyrhizobia, was named ernA for "effector required for nodulation-A." Remarkably, expressing ernA in a strain unable to nodulate A. indica conferred nodulation ability. Upon its delivery by Pseudomonas fluorescens into plant cells, ErnA was specifically targeted to the nucleus, and a fluorescence resonance energy transfer-fluorescence lifetime imaging microscopy approach supports the possibility that ErnA binds nucleic acids in the plant nuclei. Ectopic expression of ernA in A. indica roots activated organogenesis of root- and nodule-like structures. Collectively, this study unravels the symbiotic functions of rhizobial type III effectors playing distinct and complementary roles in suppression of host immune functions, infection, and nodule organogenesis, and suggests that ErnA triggers organ development in plants by a mechanism that remains to be elucidated.


Asunto(s)
Bradyrhizobium/metabolismo , Fabaceae/microbiología , Organogénesis de las Plantas/fisiología , Nodulación de la Raíz de la Planta/fisiología , Nódulos de las Raíces de las Plantas/metabolismo , Bradyrhizobium/genética , Nitrogenasa/genética , Nitrogenasa/metabolismo , Organogénesis de las Plantas/genética , Raíces de Plantas/metabolismo , Pseudomonas fluorescens/genética , Simbiosis/fisiología , Sistemas de Secreción Tipo III/metabolismo
7.
New Phytol ; 229(2): 712-734, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32981118

RESUMEN

In their natural environment, plants are exposed to biotic or abiotic stresses that occur sequentially or simultaneously. Plant responses to these stresses have been studied widely and have been well characterised in simplified systems involving single plant species facing individual stress. Temperature elevation is a major abiotic driver of climate change and scenarios have predicted an increase in the number and severity of epidemics. In this context, here we review the available data on the effect of heat stress on plant-pathogen interactions. Considering 45 studies performed on model or crop species, we discuss the possible implications of the optimum growth temperature of plant hosts and pathogens, mode of stress application and temperature variation on resistance modulations. Alarmingly, most identified resistances are altered under temperature elevation, regardless of the plant and pathogen species. Therefore, we have listed current knowledge on heat-dependent plant immune mechanisms and pathogen thermosensory processes, mainly studied in animals and human pathogens, that could help to understand the outcome of plant-pathogen interactions under elevated temperatures. Based on a general overview of the mechanisms involved in plant responses to pathogens, and integrating multiple interactions with the biotic environment, we provide recommendations to optimise plant disease resistance under heat stress and to identify thermotolerant resistance mechanisms.


Asunto(s)
Termotolerancia , Animales , Cambio Climático , Resistencia a la Enfermedad , Ambiente , Regulación de la Expresión Génica de las Plantas , Humanos , Enfermedades de las Plantas , Estrés Fisiológico
8.
Mol Plant Microbe Interact ; 33(2): 328-335, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31702436

RESUMEN

Plants have evolved mechanisms to protect themselves against pathogenic microbes and insect pests. In Arabidopsis, the immune regulator PAD4 functions with its cognate partner EDS1 to limit pathogen growth. PAD4, independently of EDS1, reduces infestation by green peach aphid (GPA). How PAD4 regulates these defense outputs is unclear. By expressing the N-terminal PAD4 lipase-like domain (PAD4LLD) without its C-terminal EDS1-PAD4 (EP) domain, we interrogated PAD4 functions in plant defense. Here, we show that transgenic expression of PAD4LLD in Arabidopsis is sufficient for limiting GPA infestation but not for conferring basal and effector-triggered pathogen immunity. This suggests that the C-terminal PAD4 EP domain is necessary for EDS1-dependent immune functions but is dispensable for aphid resistance. Moreover, PAD4LLD is not sufficient to interact with EDS1, indicating the PAD4-EP domain is required for stable heterodimerization. These data provide molecular evidence that PAD4 has domain-specific functions.


Asunto(s)
Áfidos , Arabidopsis , Resistencia a la Enfermedad , Dominios Proteicos , Animales , Áfidos/fisiología , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/parasitología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Hidrolasas de Éster Carboxílico/genética , Hidrolasas de Éster Carboxílico/metabolismo , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Dominios Proteicos/genética , Dominios Proteicos/fisiología
9.
Plant Cell ; 29(7): 1555-1570, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28600390

RESUMEN

To cause disease, diverse pathogens deliver effector proteins into host cells. Pathogen effectors can inhibit defense responses, alter host physiology, and represent important cellular probes to investigate plant biology. However, effector function and localization have primarily been investigated after overexpression in planta. Visualizing effector delivery during infection is challenging due to the plant cell wall, autofluorescence, and low effector abundance. Here, we used a GFP strand system to directly visualize bacterial effectors delivered into plant cells through the type III secretion system. GFP is a beta barrel that can be divided into 11 strands. We generated transgenic Arabidopsis thaliana plants expressing GFP1-10 (strands 1 to 10). Multiple bacterial effectors tagged with the complementary strand 11 epitope retained their biological function in Arabidopsis and tomato (Solanum lycopersicum). Infection of plants expressing GFP1-10 with bacteria delivering GFP11-tagged effectors enabled direct effector detection in planta. We investigated the temporal and spatial delivery of GFP11-tagged effectors during infection with the foliar pathogen Pseudomonas syringae and the vascular pathogen Ralstonia solanacearum Thus, the GFP strand system can be broadly used to investigate effector biology in planta.


Asunto(s)
Proteínas Bacterianas/metabolismo , Interacciones Huésped-Patógeno/fisiología , Imagen Molecular/métodos , Enfermedades de las Plantas/microbiología , Pseudomonas syringae/patogenicidad , Arabidopsis/citología , Arabidopsis/genética , Proteínas Bacterianas/genética , Epítopos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/inmunología , Solanum lycopersicum/citología , Solanum lycopersicum/microbiología , Células Vegetales/microbiología , Enfermedades de las Plantas/inmunología , Hojas de la Planta/metabolismo , Hojas de la Planta/microbiología , Plantas Modificadas Genéticamente , Ralstonia/patogenicidad , Nicotiana/genética , Nicotiana/microbiología , Factores de Virulencia/metabolismo
10.
New Phytol ; 211(2): 502-15, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26990325

RESUMEN

Bacterial wilt caused by Ralstonia solanacearum is one of the most destructive bacterial plant diseases. Although many molecular determinants involved in R. solanacearum adaptation to hosts and pathogenesis have been described, host components required for disease establishment remain poorly characterized. Phenotypical analysis of Arabidopsis mutants for leucine-rich repeat (LRR)-receptor-like proteins revealed that mutations in the CLAVATA1 (CLV1) and CLAVATA2 (CLV2) genes confer enhanced disease resistance to bacterial wilt. We further investigated the underlying mechanisms using genetic, transcriptomic and molecular approaches. The enhanced resistance of both clv1 and clv2 mutants to the bacteria did not require the well characterized CLV signalling modules involved in shoot meristem homeostasis, and was conditioned by neither salicylic acid nor ethylene defence-related hormones. Gene expression microarray analysis performed on clv1 and clv2 revealed deregulation of genes encoding nuclear transcription factor Y subunit alpha (NF-YA) transcription factors whose post-transcriptional regulation is known to involve microRNAs from the miR169 family. Both clv mutants showed a defect in miR169 accumulation. Conversely, overexpression of miR169 abrogated the resistance phenotype of clv mutants. We propose that CLV1 and CLV2, two receptors involved in CLV3 perception during plant development, contribute to bacterial wilt through a signalling pathway involving the miR169/NF-YA module.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/microbiología , Proteínas de la Membrana/metabolismo , MicroARNs/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Ralstonia solanacearum/patogenicidad , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Resistencia a la Enfermedad , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Proteínas de la Membrana/genética , MicroARNs/genética , Mutación/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Proteínas Serina-Treonina Quinasas/genética , Ácido Salicílico/metabolismo , Transducción de Señal , Virulencia
12.
iScience ; 27(3): 109224, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38439954

RESUMEN

Molecular mechanisms underlying quantitative variations of pathogenicity remain elusive. Here, we identified the Xanthomonas campestris XopJ6 effector that triggers disease resistance in cauliflower and Arabidopsis thaliana. XopJ6 is a close homolog of the Ralstoniapseudosolanacearum PopP2 YopJ family acetyltransferase. XopJ6 is recognized by the RRS1-R/RPS4 NLR pair that integrates a WRKY decoy domain mimicking effector targets. We identified a XopJ6 natural variant carrying a single residue substitution in XopJ6 WRKY-binding site that disrupts interaction with WRKY proteins. This mutation allows XopJ6 to evade immune perception while retaining some XopJ6 virulence functions. Interestingly, xopJ6 resides in a Tn3-family transposon likely contributing to xopJ6 copy number variation (CNV). Using synthetic biology, we demonstrate that xopJ6 CNV tunes pathogen virulence on Arabidopsis through gene dosage-mediated modulation of xopJ6 expression. Together, our findings highlight how sequence and structural genetic variations restricted at a particular effector gene contribute to bacterial host adaptation.

13.
Plant Cell ; 22(10): 3474-88, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20971894

RESUMEN

LYK3 is a lysin motif receptor-like kinase of Medicago truncatula, which is essential for the establishment of the nitrogen-fixing, root nodule symbiosis with Sinorhizobium meliloti. LYK3 is a putative receptor of S. meliloti Nod factor signals, but little is known of how it is regulated and how it transduces these symbiotic signals. In a screen for LYK3-interacting proteins, we identified M. truncatula Plant U-box protein 1 (PUB1) as an interactor of the kinase domain. In planta, both proteins are localized and interact in the plasma membrane. In M. truncatula, PUB1 is expressed specifically in symbiotic conditions, is induced by Nod factors, and shows an overlapping expression pattern with LYK3 during nodulation. Biochemical studies show that PUB1 has a U-box-dependent E3 ubiquitin ligase activity and is phosphorylated by the LYK3 kinase domain. Overexpression and RNA interference studies in M. truncatula show that PUB1 is a negative regulator of the LYK3 signaling pathway leading to infection and nodulation and is important for the discrimination of rhizobia strains producing variant Nod factors. The potential role of PUB E3 ubiquitin ligases in controlling plant-microbe interactions and development through interacting with receptor-like kinases is discussed.


Asunto(s)
Medicago truncatula/genética , Proteínas de Plantas/metabolismo , Nodulación de la Raíz de la Planta/genética , Ubiquitina-Proteína Ligasas/metabolismo , Regulación de la Expresión Génica de las Plantas , Medicago truncatula/enzimología , Datos de Secuencia Molecular , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Interferencia de ARN , Transducción de Señal , Sinorhizobium meliloti/fisiología , Simbiosis/genética , Nicotiana/enzimología , Nicotiana/genética , Técnicas del Sistema de Dos Híbridos , Ubiquitina-Proteína Ligasas/genética
14.
Proc Natl Acad Sci U S A ; 107(5): 2343-8, 2010 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-20133878

RESUMEN

Remorin proteins have been hypothesized to play important roles during cellular signal transduction processes. Induction of some members of this multigene family has been reported during biotic interactions. However, no roles during host-bacteria interactions have been assigned to remorin proteins until now. We used root nodule symbiosis between Medicago truncatula and Sinorhizobium meliloti to study the roles of a remorin that is specifically induced during nodulation. Here we show that this oligomeric remorin protein attaches to the host plasma membrane surrounding the bacteria and controls infection and release of rhizobia into the host cytoplasm. It interacts with the core set of symbiotic receptors that are essential for perception of bacterial signaling molecules, and thus might represent a plant-specific scaffolding protein.


Asunto(s)
Proteínas Portadoras/fisiología , Medicago truncatula/microbiología , Medicago truncatula/fisiología , Fosfoproteínas/fisiología , Proteínas de Plantas/fisiología , Sinorhizobium meliloti/fisiología , Simbiosis/fisiología , Secuencia de Bases , Proteínas Portadoras/genética , Cartilla de ADN/genética , Medicago truncatula/genética , Datos de Secuencia Molecular , Mutación , Fosfoproteínas/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Interferencia de ARN , Rhizobium/genética , Transducción de Señal , Transformación Genética
15.
ISME J ; 17(9): 1416-1429, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37355742

RESUMEN

The establishment of the rhizobium-legume symbiosis is generally based on plant perception of Nod factors (NFs) synthesized by the bacteria. However, some Bradyrhizobium strains can nodulate certain legume species, such as Aeschynomene spp. or Glycine max, independently of NFs, and via two different processes that are distinguished by the necessity or not of a type III secretion system (T3SS). ErnA is the first known type III effector (T3E) triggering nodulation in Aeschynomene indica. In this study, a collection of 196 sequenced Bradyrhizobium strains was tested on A. indica. Only strains belonging to the photosynthetic supergroup can develop a NF-T3SS-independent symbiosis, while the ability to use a T3SS-dependent process is found in multiple supergroups. Of these, 14 strains lacking ernA were tested by mutagenesis to identify new T3Es triggering nodulation. We discovered a novel T3E, Sup3, a putative SUMO-protease without similarity to ErnA. Its mutation in Bradyrhizobium strains NAS96.2 and WSM1744 abolishes nodulation and its introduction in an ernA mutant of strain ORS3257 restores nodulation. Moreover, ectopic expression of sup3 in A. indica roots led to the formation of spontaneous nodules. We also report three other new T3Es, Ubi1, Ubi2 and Ubi3, which each contribute to the nodulation capacity of strain LMTR13. These T3Es have no homology to known proteins but share with ErnA three motifs necessary for ErnA activity. Together, our results highlight an unsuspected distribution and diversity of T3Es within the Bradyrhizobium genus that may contribute to their symbiotic efficiency by participating in triggering legume nodulation.


Asunto(s)
Bradyrhizobium , Fabaceae , Bradyrhizobium/clasificación , Bradyrhizobium/genética , Bradyrhizobium/aislamiento & purificación , Bradyrhizobium/fisiología , Fabaceae/microbiología , Fabaceae/fisiología , Filogenia , Nodulación de la Raíz de la Planta , Simbiosis , Proteínas Bacterianas/genética
16.
Mol Plant Microbe Interact ; 25(7): 941-53, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22414437

RESUMEN

We present here the characterization of a new gene family, awr, found in all sequenced Ralstonia solanacearum strains and in other bacterial pathogens. We demonstrate that the five paralogues in strain GMI1000 encode type III-secreted effectors and that deletion of all awr genes severely impairs its capacity to multiply in natural host plants. Complementation studies show that the AWR (alanine-tryptophan-arginine tryad) effectors display some functional redundancy, although AWR2 is the major contributor to virulence. In contrast, the strain devoid of all awr genes (Δawr1-5) exhibits enhanced pathogenicity on Arabidopsis plants. A gain-of-function approach expressing AWR in Pseudomonas syringae pv. tomato DC3000 proves that this is likely due to effector recognition, because AWR5 and AWR4 restrict growth of this bacterium in Arabidopsis. Transient overexpression of AWR in nonhost tobacco species caused macroscopic cell death to varying extents, which, in the case of AWR5, shows characteristics of a typical hypersensitive response. Our work demonstrates that AWR, which show no similarity to any protein with known function, can specify either virulence or avirulence in the interaction of R. solanacearum with its plant hosts.


Asunto(s)
Genes Bacterianos/genética , Familia de Multigenes/genética , Enfermedades de las Plantas/microbiología , Ralstonia solanacearum/genética , Ralstonia solanacearum/patogenicidad , Arabidopsis/microbiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Muerte Celular , Regulación de la Expresión Génica de las Plantas/genética , Prueba de Complementación Genética , Genómica , Interacciones Huésped-Patógeno , Filogenia , Hojas de la Planta/microbiología , Pseudomonas syringae/genética , ARN de Planta/genética , Ralstonia solanacearum/fisiología , Eliminación de Secuencia , Nicotiana/microbiología , Virulencia/genética
17.
PLoS Pathog ; 6(11): e1001202, 2010 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-21124938

RESUMEN

Type III effector proteins from bacterial pathogens manipulate components of host immunity to suppress defence responses and promote pathogen development. In plants, host proteins targeted by some effectors called avirulence proteins are surveyed by plant disease resistance proteins referred to as "guards". The Ralstonia solanacearum effector protein PopP2 triggers immunity in Arabidopsis following its perception by the RRS1-R resistance protein. Here, we show that PopP2 interacts with RRS1-R in the nucleus of living plant cells. PopP2 belongs to the YopJ-like family of cysteine proteases, which share a conserved catalytic triad that includes a highly conserved cysteine residue. The catalytic cysteine mutant PopP2-C321A is impaired in its avirulence activity although it is still able to interact with RRS1-R. In addition, PopP2 prevents proteasomal degradation of RRS1-R, independent of the presence of an integral PopP2 catalytic core. A liquid chromatography/tandem mass spectrometry analysis showed that PopP2 displays acetyl-transferase activity leading to its autoacetylation on a particular lysine residue, which is well conserved among all members of the YopJ family. These data suggest that this lysine residue may correspond to a key binding site for acetyl-coenzyme A required for protein activity. Indeed, mutation of this lysine in PopP2 abolishes RRS1-R-mediated immunity. In agreement with the guard hypothesis, our results favour the idea that activation of the plant immune response by RRS1-R depends not only on the physical interaction between the two proteins but also on its perception of PopP2 enzymatic activity.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/microbiología , Proteínas Bacterianas/metabolismo , Inmunidad Innata/inmunología , Lisina/metabolismo , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta , Ralstonia solanacearum/metabolismo , Acetilación , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/inmunología , Proteínas Bacterianas/genética , Proteínas Bacterianas/inmunología , Western Blotting , Núcleo Celular/inmunología , Núcleo Celular/metabolismo , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/inmunología , Cisteína Endopeptidasas/metabolismo , Fluorescencia , Regulación de la Expresión Génica de las Plantas , Lisina/genética , Lisina/inmunología , Datos de Secuencia Molecular , Mutación/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , ARN Mensajero/genética , Ralstonia solanacearum/genética , Ralstonia solanacearum/patogenicidad , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido
18.
New Phytol ; 194(4): 1035-1045, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22432714

RESUMEN

Means to control bacterial wilt caused by the phytopathogenic root bacteria Ralstonia solanacearum are limited. Mutants in a large cluster of genes (hrp) involved in the pathogenicity of R. solanacearum were successfully used in a previous study as endophytic biocontrol agents in challenge inoculation experiments on tomato. However, the molecular mechanisms controlling this resistance remained unknown. We developed a protection assay using Arabidopsis thaliana as a model plant and analyzed the events underlying the biological control by genetic, transcriptomic and molecular approaches. High protection rates associated with a significant decrease in the multiplication of R. solanacearum were observed in plants pre-inoculated with a ΔhrpB mutant strain. Neither salicylic acid, nor jasmonic acid/ethylene played a role in the establishment of this resistance. Microarray analysis showed that 26% of the up-regulated genes in protected plants are involved in the biosynthesis and signalling of abscissic acid (ABA). In addition 21% of these genes are constitutively expressed in the irregular xylem cellulose synthase mutants (irx), which present a high level of resistance to R. solanacearum. We propose that inoculation with the ΔhrpB mutant strain generates a hostile environment for subsequent plant colonization by a virulent strain of R. solanacearum.


Asunto(s)
Ácido Abscísico/biosíntesis , Arabidopsis/microbiología , Interacciones Huésped-Patógeno/genética , Enfermedades de las Plantas/prevención & control , Ralstonia solanacearum/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Fosfoproteínas Fosfatasas/genética , Pseudomonas syringae/fisiología , Transducción de Señal
19.
Nat Commun ; 12(1): 5969, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34645811

RESUMEN

The Yersinia outer protein J (YopJ) family effectors are widely deployed through the type III secretion system by both plant and animal pathogens. As non-canonical acetyltransferases, the enzymatic activities of YopJ family effectors are allosterically activated by the eukaryote-specific ligand inositol hexaphosphate (InsP6). However, the underpinning molecular mechanism remains undefined. Here we present the crystal structure of apo-PopP2, a YopJ family member secreted by the plant pathogen Ralstonia solanacearum. Structural comparison of apo-PopP2 with the InsP6-bound PopP2 reveals a substantial conformational readjustment centered in the substrate-binding site. Combining biochemical and computational analyses, we further identify a mechanism by which the association of InsP6 with PopP2 induces an α-helix-to-ß-strand transition in the catalytic core, resulting in stabilization of the substrate recognition helix in the target protein binding site. Together, our study uncovers the molecular basis governing InsP6-mediated allosteric regulation of YopJ family acetyltransferases and further expands the paradigm of fold-switching proteins.


Asunto(s)
Acetiltransferasas/química , Apoproteínas/química , Arabidopsis/microbiología , Proteínas Bacterianas/química , Ácido Fítico/química , Ralstonia solanacearum/química , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Regulación Alostérica , Apoproteínas/genética , Apoproteínas/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Modelos Moleculares , Ácido Fítico/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Ralstonia solanacearum/enzimología , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Especificidad por Sustrato , Nicotiana/microbiología
20.
Plant J ; 60(4): 602-13, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19686535

RESUMEN

Colletotrichum higginsianum is a hemibiotrophic fungal pathogen that causes anthracnose disease on Arabidopsis and other crucifer hosts. By exploiting natural variation in Arabidopsis we identified a resistance locus that is shared by four geographically distinct accessions (Ws-0, Kondara, Gifu-2 and Can-0). A combination of quantitative trait loci (QTL) and Mendelian mapping positioned this locus within the major recognition gene complex MRC-J on chromosome 5 containing the Toll-interleukin-1 receptor/nucleotide-binding site/leucine-rich repeat (TIR-NB-LRR) genes RPS4 and RRS1 that confer dual resistance to C. higginsianum in Ws-0 (Narusaka et al., 2009). We find that the resistance shared by these diverse Arabidopsis accessions is expressed at an early stage of fungal invasion, at the level of appressorial penetration and establishment of intracellular biotrophic hyphae, and that this determines disease progression. Resistance is not associated with host hypersensitive cell death, an oxidative burst or callose deposition in epidermal cells but requires the defense regulator EDS1, highlighting new functions of TIR-NB-LRR genes and EDS1 in limiting early establishment of fungal biotrophy. While the Arabidopsis accession Ler-0 is fully susceptible to C. higginsianum infection, Col-0 displays intermediate resistance that also maps to MRC-J. By analysis of null mutants of RPS4 and RRS1 in Col-0 we show that these genes, individually, do not contribute strongly to C. higginsianum resistance but are both required for resistance to Pseudomonas syringae bacteria expressing the Type III effector, AvrRps4. We conclude that distinct allelic forms of RPS4 and RRS1 probably cooperate to confer resistance to different pathogens.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Enfermedades de las Plantas/genética , Proteínas de Plantas/metabolismo , Alelos , Arabidopsis/inmunología , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Mapeo Cromosómico , Colletotrichum , ADN de Plantas/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Geografía , Inmunidad Innata , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/genética , Pseudomonas syringae , Sitios de Carácter Cuantitativo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA