Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Small ; 20(22): e2307090, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38143288

RESUMEN

The use of functional materials is a popular strategy to mitigate the polysulfide-induced accelerated aging of lithium-sulfur (Li-S) batteries. However, deep insights into the role of electrode design and formulation are less elaborated in the available literature. Such information is not easy to unearth from the existing reports on account of the scattered nature of the data and the big dissimilarities among the reported materials, preparation protocols, and cycling conditions. In this study, model functional materials known for their affinity toward polysulfide species, are integrated into the porous sulfur electrodes at different quantities and with various spatial distributions. The electrodes are assembled in 240 lithium-sulfur cells and thoroughly analyzed for their short- and long-term electrochemical performance. Advanced data processing and visualization techniques enable the unraveling of the impact of porous electrodes' formulation and design on self-discharge, sulfur utilization, and capacity loss. The results highlight and quantify the sensitivity of the cell performance to the synergistic interactions of catalyst loading and its spatial positioning with respect to the sulfur particles and carbon-binder domain. The findings of this work pave the road for a holistic optimization of the advanced sulfur electrodes for durable Li-S batteries.

2.
Inorg Chem ; 63(12): 5568-5579, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38470041

RESUMEN

Two-dimensional (2D) hybrid organic-inorganic perovskites constitute a versatile class of materials applied to a variety of optoelectronic devices. These materials are composed of alternating layers of inorganic lead halide octahedra and organic ammonium cations. Most perovskite research studies so far have focused on organic sublattices based on phenethylammonium and alkylammonium cations, which are packed by van der Waals cohesive forces. Here, we report a more complex organic sublattice containing benzotriazole-based ammonium cations packed through interdigitated π-π stacking and hydrogen bonding. Single crystals and thin films of four perovskite derivatives are studied in depth with optical spectroscopy and X-ray diffraction, supported by density-functional theory calculations. We quantify the lattice stabilization of interdigitation, dipole-dipole interactions, and inter- as well as intramolecular hydrogen bonding. Furthermore, we investigate the driving force behind interdigitation by defining a steric occupancy factor σ and tuning the composition of the organic and inorganic sublattice. We relate the phenomenon of interdigitation to the available lattice space and to weakened hydrogen bonding to the inorganic octahedra. Finally, we find that the stabilizing interactions in the organic sublattice slightly improve the thermal stability of the perovskite. This work sheds light on the design rules and structure-property relationships of 2D layered hybrid perovskites.

3.
Nanotechnology ; 35(23)2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38417172

RESUMEN

Transition metal phosphates are promising catalysts for the oxygen evolution reaction (OER) in alkaline medium. Herein, Fe-doped Ni phosphates are deposited using plasma-enhanced atomic layer deposition (PE-ALD) at 300 °C. A sequence offFe phosphate PE-ALD cycles andnNi phosphate PE-ALD cycles is repeatedxtimes. The Fe to Ni ratio can be controlled by the cycle ratio (f/n), while the film thickness can be controlled by the number of cycles (xtimes (n+f)). 30 nm films with an Fe/Ni ratio of ∼10% and ∼37%, respectively, are evaluated in 1.0 M KOH solution. Remarkably, a significant difference in OER activity is found when the order of the Ni and Fe phosphate PE-ALD cycles in the deposition sequence is reversed. A 20%-45% larger current density is obtained for catalysts grown with an Fe phosphate PE-ALD cycle at the end compared to the Ni phosphate-terminated flavour. We attribute this to a higher concentration of Fe centers on the surface, as a consequence of the specific PE-ALD approach. Secondly, increasing the thickness of the catalyst films up to 160 nm results in an increase of the OER current density and active surface area, suggesting that the as-deposited smooth and continuous films are converted into electrolyte-permeable structures during catalyst activation and operation. This work demonstrates the ability of PE-ALD to control both the surface and bulk composition of thin film electrocatalysts, offering valuable opportunities to understand their impact on performance.

4.
Small ; 19(5): e2205217, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36445117

RESUMEN

Metal nanoparticle (NP) sintering is a prime cause of catalyst degradation, limiting its economic lifetime and viability. To date, sintering phenomena are interrogated either at the bulk scale to probe averaged NP properties or at the level of individual NPs to visualize atomic motion. Yet, "mesoscale" strategies which bridge these worlds can chart NP populations at intermediate length scales but remain elusive due to characterization challenges. Here, a multi-pronged approach is developed to provide complementary information on Pt NP sintering covering multiple length scales. High-resolution scanning electron microscopy (HRSEM) and Monte Carlo simulation show that the size evolution of individual NPs depends on the number of coalescence events they undergo during their lifetime. In its turn, the probability of coalescence is strongly dependent on the NP's mesoscale environment, where local population heterogeneities generate NP-rich "hotspots" and NP-free zones during sintering. Surprisingly, advanced in situ synchrotron X-ray diffraction shows that not all NPs within the small NP sub-population are equally prone to sintering, depending on their crystallographic orientation on the support surface. The demonstrated approach shows that mesoscale heterogeneities in the NP population drive sintering and mitigation strategies demand their maximal elimination via advanced catalyst synthesis strategies.

5.
J Chem Phys ; 159(3)2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37458350

RESUMEN

Metal oxide semiconductors constitute a vast group of materials whose physical properties are greatly affected by native defects. For decades, x-ray photoelectron spectroscopy (XPS) has been widely used in defect analysis. However, correct interpretation of XPS results remains a difficult task. In this work, we present a detailed first-principles study on the core-level shift of the most stable and commonly cited crystal imperfections in ZnO, including O and -OH species at the surface with different coverages and bulk defects, including O interstitial (Oi), O vacancy in the +2 charge state (Vo2+), and the neutral vacancy (Vo0). The O1s core level spectrum is simulated and compared with experiments to understand the correlation between local atomic structures and features in the O1s spectrum. In particular, our results indicate that the widely adopted assignment in the defect analysis of ZnO, which links the defect peak in XPS to Vo, the most stable defect, is very likely a misinterpretation. Theoretical analysis indicates that there are no distinguishable XPS features arising from the Vo defect. Furthermore, we show that the commonly observed defect-related peak instead arises due to Oi or specific surface configurations. Given the importance of native defects in materials performance, misinterpretation of XPS results may lead to erroneous conclusions regarding materials properties. This work provides a first-principles basis for the analysis of oxide defects through XPS.

6.
Faraday Discuss ; 236(0): 485-509, 2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-35543256

RESUMEN

The spectro-kinetic characterization of complex catalytic materials, i.e. relating the observed reaction kinetics to spectroscopic descriptors of the catalyst state, presents a fundamental challenge with a potentially significant impact on various chemical technologies. We propose to reconcile the kinetic characteristics available from temporal analysis of products (TAP) pulse-response kinetic experiments with the spectroscopic data available from ambient pressure X-ray photoelectron spectroscopy (AP-XPS), using atomic layer deposition (ALD) to synthesize multicomponent model surfaces on 2D and 3D supports. The accumulated surface exposure to a key reactant (total number of collisions) is used as a common scale within which the results from the two techniques can be rigorously compared for microscopically-equivalent surfaces. This approach is illustrated by proof-of-principle TAP and AP-XPS experiments with PtIn/MgO/SiO2 catalysts for alkane dehydrogenation at 800 K. Similarly to industrially-relevant Pt-based bimetallic catalysts on high-surface area supports, the initial period of coke accumulation on the surface resulted in gradually decreased conversion and increased selectivity towards propylene. We were able to monitor the process of coke deposition with both AP-XPS and TAP. The evolution of the C 1s photoelectron spectra is aligned on the common exposure scale with the evolution of the coke amounts deposited per Pt site during a multi-pulse TAP experiment. Moreover, TAP provided quantitative kinetic descriptors of propane consumption and product mean residence time within this common exposure scale. The challenges and opportunities presented by this novel tandem methodology are discussed in the context of catalysis research.

7.
Appl Opt ; 61(8): 2060-2078, 2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-35297898

RESUMEN

The determination of fundamental optical parameters is essential for the development of new optical elements such as mirrors, gratings, or photomasks. Especially in the extreme ultraviolet (EUV) and soft x-ray spectral range, the existing databases for the refractive indices of many materials and compositions are insufficient or are a mixture of experimentally measured and calculated values from atomic scattering factors. Since the physical properties of bulk materials and thin films with thicknesses in the nanometer range are not identical, measurements need to be performed on thin layers. In this study we demonstrate how optical constants of various thin film samples on a bulk substrate can be determined from reflection measurements in the EUV photon energy range from 62 eV to 124 eV. Thin films with thickness of 20 nm to 50 nm of pure Mo, Ni, Pt, Ru, Ta, and Te and different compositions of NixAlx, PtTe, PtxMo, RuxTax, Ru3Re, Ru2W, and TaTeN were prepared by DC magnetron sputtering and measured using EUV reflectometry. The determination optical constants of the different materials are discussed and compared to existing tabulated values.

8.
J Am Chem Soc ; 143(11): 4290-4301, 2021 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-33710882

RESUMEN

Colloidal quantum dots (QDs) made from In-based III-V semiconductors are emerging as a printable infrared material. However, the formulation of infrared inks and the formation of electrically conductive QD coatings is hampered by a limited understanding of the surface chemistry of In-based QDs. In this work, we present a case study on the surface termination of IR active III-V QDs absorbing at 1220 nm that were synthesized by reducing a mixture of indium halides and an aminoarsine by an aminophosphine in oleylamine. We find that this recently established synthesis method yields In(As,P) QDs with minor phosphorus admixing and a surface terminated by a mixture of oleylamine and chloride. Exposing these QDs to protic surface-active compounds RXH, such as fatty acids or alkanethiols, initiates a ligand exchange reaction involving the binding of the conjugate base RX- and the desorption of 1 equiv of alkylammonium chloride. Using density functional theory simulations, we confirm that the formation of the alkylammonium chloride salt can provide the energy needed to drive such acid/base mediated ligand exchange reactions, even for weak organic acids such as alkanethiols. We conclude that the unique surface termination of In(As,P) QDs, consisting of a mixture of L-type and X-type ligands and acid/base mediated ligand exchange, can form a general model for In-based III-V QDs synthesized using indium halides and aminopnictogens.

9.
Langmuir ; 37(43): 12608-12615, 2021 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-34669405

RESUMEN

Controlled surface functionalization with azides to perform on surface "click chemistry" is desired for a large range of fields such as material engineering and biosensors. In this work, the stability of an azido-containing self-assembled monolayer in high vacuum is investigated using in situ Fourier transform infrared spectroscopy. The intensity of the antisymmetric azide stretching vibration is found to decrease over time, suggesting the degradation of the azido-group in high vacuum. The degradation is further investigated at three different temperatures and at seven different nitrogen pressures ranging from 1 × 10-6 mbar to 5 × 10-3 mbar. The degradation is found to increase at higher temperatures and at lower nitrogen pressures. The latter supporting the theory that the degradation reaction involves the decomposition into molecular nitrogen. For the condition with the highest degradation detected, only 63% of azides is found to remain at the surface after 8 h in vacuum. The findings show a significant loss in control of the surface functionalization. The instability of azides in high vacuum should therefore always be considered when depositing or postprocessing azido-containing layers.

10.
Nanotechnology ; 32(9): 095602, 2021 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-33120377

RESUMEN

We report the phase and size-controlled synthesis of Fe-Pt nanoalloys, prepared via a two-step synthesis procedure. The first step is the deposition of bilayers consisting of iron oxide and Pt films of desired thicknesses using atomic layer deposition, followed by a temperature-programmed reduction treatment of the film under H2/N2 atmosphere. This method enables the phase pure synthesis of all three Fe-Pt alloy phases, namely Fe3Pt, FePt, and FePt3, as revealed by in situ x-ray diffraction and x-ray fluorescence measurements. It is also demonstrated that by changing the total thickness of the bilayers while keeping the Pt/(Pt + Fe) atomic ratio constant, the size of the resulting bimetallic nanoparticles can be tuned, as confirmed by scanning electron microscopic measurements.

11.
Opt Express ; 28(22): 33564-33572, 2020 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-33115016

RESUMEN

In the quest for a more compact and cheaper Raman sensor, photonic integration and plasmonic enhancement are central. Nanoplasmonic slot waveguides exhibit the benefits of SERS substrates while being compatible with photonic integration and mass-scale (CMOS) fabrication. A difficulty in pursuing further integration of the Raman sensor with lasers, spectral filters, spectrometers and interconnecting waveguides lies in the presence of a photon background generated by the excitation laser field in any dielectric waveguide constituting those elements. Here, we show this problem can be mitigated by using a multi-mode interferometer and a nanoplasmonic slot waveguide operated in back-reflection to greatly suppress the excitation field behind the sensor while inducing very little photon background.

12.
Phys Chem Chem Phys ; 22(21): 11903-11914, 2020 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-32436930

RESUMEN

The reaction mechanism of the recently reported Me3AuPMe3-H2 plasma gold ALD process was investigated using in situ characterization techniques in a pump-type ALD system. In situ RAIRS and in vacuo XPS measurements confirm that the CH3 and PMe3 ligands remain on the gold surface after chemisorption of the precursor, causing self-limiting adsorption. Remaining surface groups are removed by the H2 plasma in the form of CH4 and likely as PHxMey groups, allowing chemisorption of new precursor molecules during the next exposure. The decomposition behaviour of the Me3AuPMe3 precursor on a Au surface is also presented and linked to the stability of the precursor ligands that govern the self-limiting growth during ALD. Desorption of the CH3 ligands occurs at all substrate temperatures during evacuation to high vacuum, occurring faster at higher temperatures. The PMe3 ligand is found to be less stable on a gold surface at higher substrate temperatures and is accompanied by an increase in precusor decomposition on a gold surface, indicating that the temperature dependent stability of the precursor ligands is an important factor to ensure self-limiting precursor adsorption during ALD. Remarkably, precursor decomposition does not occur on a SiO2 surface, in situ transmission absorption infrared experiments indicate that nucleation on a SiO2 surface occurs on Si-OH groups. Finally, we comment on the use of different co-reactants during PE-ALD of Au and we report on different PE-ALD growth with the reported O2 plasma and H2O process in pump-type versus flow-type ALD systems.

13.
Phys Chem Chem Phys ; 22(16): 9124-9136, 2020 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-32301468

RESUMEN

Atomic layer deposition (ALD) of noble metals is an attractive technology potentially applied in nanoelectronics and catalysis. Unlike the combustion-like mechanism shown by other noble metal ALD processes, the main palladium (Pd) ALD process using palladium(ii)hexafluoroacetylacetonate [Pd(hfac)2] as precursor is based on true reducing surface chemistry. In this work, a thorough investigation of plasma-enhanced Pd ALD is carried out by employing this precursor with different plasmas (H2*, NH3*, O2*) and plasma sequences (H2* + O2*, O2* + H2*) as co-reactants at varying temperatures, providing insights in the co-reactant and temperature dependence of the Pd growth per cycle (GPC). At all temperatures, films grown with only reducing co-reactants contain a large amount of carbon, while an additional O2* in the co-reactant sequence helps to obtain Pd films with much lower impurity concentrations. Remarkably, in situ XRD and SEM show an abrupt release of the carbon impurities during annealing at moderate temperatures in different atmospheres. In vacuo XPS measurements reveal the remaining species on the as-deposited surface after every exposure. Links are established between the particular surface termination prior to the precursor pulse and the observed differences in GPC, highlighting hydrogen as the key growth facilitator and carbon and oxygen as growth inhibitors. The increase in GPC with temperature for ALD sequences with H2* or NH3* prior to the precursor pulse is explained by an increase in the amount of hydrogen species that reside on the Pd surface which are available for reaction with the Pd(hfac)2 precursor.

14.
Phys Chem Chem Phys ; 22(17): 9262-9271, 2020 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-32307490

RESUMEN

The thermal and plasma-enhanced atomic layer deposition (ALD) growth of titanium oxide using an alkylamine precursor - tetrakis(dimethylamino)titanium (TDMAT) - was investigated. The surface species present during both the precursor and co-reactant pulse were studied with in situ reflection mid-IR spectroscopy (FTIR) and in vacuo X-ray photoelectron spectroscopy (XPS). The thermal process using H2O vapor proceeds through a typical ligand exchange reaction mechanism. The plasma-enhanced ALD processes using H2O-plasma or O2-plasma exhibit an additional decomposition and combustion reaction mechanism. After the plasma exposure, imine (N[double bond, length as m-dash]C) and isocyanate (N[double bond, length as m-dash]C[double bond, length as m-dash]O) surface species were observed by in situ FTIR. In addition, nitrites (NOx) were detected using in vacuo XPS during the O2-plasma process. This study presents the importance of the use of in situ FTIR and in vacuo XPS as complementary techniques to learn more about the ALD reaction mechanism. While in situ FTIR is very sensitive to changes of chemical bonds at the surface, exact identification and quantification could only be done with the aid of in vacuo XPS.

15.
Phys Chem Chem Phys ; 22(43): 24917-24933, 2020 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-33135021

RESUMEN

The increasing interest in atomic layer deposition (ALD) of Pt for the controlled synthesis of supported nanoparticles for catalysis demands an in-depth understanding of the nucleation controlled growth behaviour. We present an in situ investigation of Pt ALD on planar Si substrates, with native SiO2, by means of X-ray fluorescence (XRF) and grazing incidence small-angle X-ray scattering (GISAXS), using a custom-built synchrotron-compatible high-vacuum ALD setup and focusing on the thermal Pt ALD process, comprising (methylcyclopentadienyl)trimethylplatinum (MeCpPtMe3) and O2 gas at 300 °C. The evolution in key scattering features provides insights into the growth kinetics of Pt deposits from small nuclei to isolated islands and coalesced worm-like structures. An analysis approach is introduced to extract dynamic information on the average real space parameters, such as Pt cluster shape, size, and spacing. The results indicate a nucleation stage, followed by a diffusion-mediated particle growth regime that is marked by a decrease in average areal density and the formation of laterally elongated Pt clusters. Growth of the Pt nanoparticles is thus not only governed by the adsorption of Pt precursor molecules from the gas-phase and subsequent combustion of the ligands, but is largely determined by adsorption of migrating Pt species on the surface and diffusion-driven particle coalescence. Moreover, the influence of the Pt precursor dose on the particle nucleation and growth is investigated. It is found that the precursor dose influences the deposition rate (number of Pt atoms per cycle), while the particle morphology for a specific Pt loading is independent of the precursor dose used in the ALD process. Our results prove that combining in situ GISAXS and XRF provides an excellent experimental strategy to obtain new fundamental insights about the role of deposition parameters on the morphology of Pt ALD depositions. This knowledge is vital to improve control over the Pt nucleation stage and enable efficient synthesis of supported nanocatalysts.

16.
Molecules ; 25(16)2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32824236

RESUMEN

Supported nanoparticles are commonly applied in heterogeneous catalysis. The catalytic performance of these solid catalysts is, for a given support, dependent on the nanoparticle size, shape, and composition, thus necessitating synthesis techniques that allow for preparing these materials with fine control over those properties. Such control can be exploited to deconvolute their effects on the catalyst's performance, which is the basis for knowledge-driven catalyst design. In this regard, bottom-up synthesis procedures based on colloidal chemistry or atomic layer deposition (ALD) have proven successful in achieving the desired level of control for a variety of fundamental studies. This review aims to give an account of recent progress made in the two aforementioned synthesis techniques for the application of controlled catalytic materials in gas-phase catalysis. For each technique, the focus goes to mono- and bimetallic materials, as well as to recent efforts in enhancing their performance by embedding colloidal templates in porous oxide phases or by the deposition of oxide overlayers via ALD. As a recent extension to the latter, the concept of area-selective ALD for advanced atomic-scale catalyst design is discussed.


Asunto(s)
Aleaciones/química , Coloides/química , Gases/química , Nanopartículas/química , Catálisis , Porosidad , Propiedades de Superficie
17.
Opt Lett ; 44(5): 1112-1115, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30821783

RESUMEN

Silicon nitride (SiN) is currently the most prominent CMOS-compatible platform for photonics at wavelengths <1 µm. However, realizing fast electro-optic (EO) modulators, the key components of any integrated optics platform, remains challenging in SiN. Modulators based on the plasma dispersion effect, as in silicon, are not available. Despite the fact that significant second-harmonic generation has been reported for silicon-rich SiN, no efficient Pockels effect-based modulators have been demonstrated. Here we report the back-end CMOS-compatible atomic layer deposition (ALD) of conventional second-order nonlinear crystals, zinc oxide, and zinc sulfide, on existing SiN waveguide circuits. Using these ALD overlays, we demonstrate EO modulation in ring resonators.

18.
Sensors (Basel) ; 19(20)2019 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-31614444

RESUMEN

Samarium monosulfide (SmS) is a switchable material, showing a pressure-induced semiconductor to metal transition. As such, it can be used in different applications such as piezoresistive sensors and memory devices. In this work, we present how e-beam sublimation of samarium metal in a reactive atmosphere can be used for the deposition of semiconducting SmS thin films on 150 mm diameter silicon wafers. The deposition parameters influencing the composition and properties of the thin films are evaluated, such as the deposition rate of Sm metal, the substrate temperature and the H2S partial pressure. We then present the changes in the optical, structural and electrical properties of this compound after the pressure-induced switching to the metallic state. The back-switching and stability of SmS thin films are studied as a function of temperature and atmosphere via in-situ X-ray diffraction. The thermally induced back switching initiates at 250 °C, while above 500 °C, Sm2O2S is formed. Lastly, we explore the possibility to determine the valence state of the samarium ions by means of X-ray photoelectron spectroscopy.

19.
Angew Chem Int Ed Engl ; 58(38): 13220-13230, 2019 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-30934165

RESUMEN

Bimetallic nanocatalysts are key enablers of current chemical technologies, including car exhaust converters and fuel cells, and play a crucial role in industry to promote a wide range of chemical reactions. However, owing to significant characterization challenges, insights in the dynamic phenomena that shape and change the working state of the catalyst await further refinement. Herein, we discuss the atomic-scale processes leading to mono- and bimetallic nanoparticle formation and highlight the dynamics and kinetics of lifetime changes in bimetallic catalysts with showcase examples for Pt-based systems. We discuss how in situ and operando X-ray spectroscopy, scattering, and diffraction can be used as a complementary toolbox to interrogate the working principles of today's and tomorrow's bimetallic nanocatalysts.

20.
Phys Chem Chem Phys ; 20(39): 25343-25356, 2018 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-30259938

RESUMEN

Thermal atomic layer deposition (ALD) and plasma-enhanced ALD (PE-ALD) of Pt, using MeCpPtMe3 as the precursor and O2 gas or O2 plasma as the reactant, are studied with in situ reflection Fourier transform infrared spectroscopy (FTIR) at different substrate temperatures. This is done to identify the functional groups present during Pt ALD and investigate the origin of the temperature dependent growth rate of the thermal process. Evidence is given that CH and C[double bond, length as m-dash]C containing species are present on the surface after precursor exposure at low substrate temperatures (<150 °C), poisoning the surface during thermal ALD. Both species are removed by O2 plasma enabling PE-ALD below 150 °C through combustion reactions. Above 150 °C, no CH stretching modes were detected and the C[double bond, length as m-dash]C vibration diminished, indicating dehydrogenation reactions and ligand restructuring. In addition, the PE-ALD FTIR spectra revealed the presence of combustion reaction products on the surface after precursor exposure. These were removed during the reactant exposure and during this exposure the formation of surface OH groups was found for both high and low substrate temperatures. We conclude that the decrease in the growth rate for the thermal process is caused by the inability of the surface to properly dehydrogenate and restructure the poisoning precursor ligands.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA