Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Enzyme Inhib Med Chem ; 36(1): 964-976, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34056989

RESUMEN

Ischaemic stroke is a leading cause of death and disability. One of the major pathogenic mechanisms after ischaemia includes the switch to the glycolytic pathway, leading to tissue acidification. Carbonic anhydrase (CA) contributes to pH regulation. A new generation of CA inhibitors, AN11-740 and AN6-277 and the reference compound acetazolamide (ACTZ) were investigated in two models of brain ischaemia: in rat hippocampal acute slices exposed to severe oxygen, glucose deprivation (OGD) and in an in vivo model of focal cerebral ischaemia induced by permanent occlusion of the middle cerebral artery (pMCAo) in the rat. In vitro, the application of selective CAIs significantly delayed the appearance of anoxic depolarisation induced by OGD. In vivo, sub-chronic systemic treatment with AN11-740 and ACTZ significantly reduced the neurological deficit and decreased the infarct volume after pMCAo. CAIs counteracted neuronal loss, reduced microglia activation and partially counteracted astrocytes degeneration inducing protection from functional and tissue damage.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Inhibidores de Anhidrasa Carbónica/farmacología , Anhidrasas Carbónicas/metabolismo , Modelos Animales de Enfermedad , Fármacos Neuroprotectores/farmacología , Animales , Isquemia Encefálica/metabolismo , Inhibidores de Anhidrasa Carbónica/síntesis química , Inhibidores de Anhidrasa Carbónica/química , Relación Dosis-Respuesta a Droga , Masculino , Estructura Molecular , Fármacos Neuroprotectores/síntesis química , Fármacos Neuroprotectores/química , Ratas , Ratas Wistar , Relación Estructura-Actividad
2.
Int J Mol Sci ; 22(9)2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-34068564

RESUMEN

Ischemic stroke is a leading cause of death and disability worldwide. The only pharmacological treatment available to date for cerebral ischemia is tissue plasminogen activator (t-PA) and the search for successful therapeutic strategies still remains a major challenge. The loss of cerebral blood flow leads to reduced oxygen and glucose supply and a subsequent switch to the glycolytic pathway, which leads to tissue acidification. Carbonic anhydrase (CA, EC 4.2.1.1) is the enzyme responsible for converting carbon dioxide into a protons and bicarbonate, thus contributing to pH regulation and metabolism, with many CA isoforms present in the brain. Recently, numerous studies have shed light on several classes of carbonic anhydrase inhibitor (CAI) as possible new pharmacological agents for the management of brain ischemia. In the present review we summarized pharmacological, preclinical and clinical findings regarding the role of CAIs in strokes and we discuss their potential protective mechanisms.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Inhibidores de Anhidrasa Carbónica/uso terapéutico , Anhidrasas Carbónicas/genética , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Bicarbonatos/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Isquemia Encefálica/genética , Isquemia Encefálica/patología , Dióxido de Carbono/metabolismo , Humanos , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/genética , Infarto de la Arteria Cerebral Media/patología , Accidente Cerebrovascular Isquémico/genética , Sulfonamidas/uso terapéutico
3.
Int J Mol Sci ; 21(24)2020 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-33353217

RESUMEN

Adenosine is a signaling molecule, which, by activating its receptors, acts as an important player after cerebral ischemia. Here, we review data in the literature describing A2BR-mediated effects in models of cerebral ischemia obtained in vivo by the occlusion of the middle cerebral artery (MCAo) or in vitro by oxygen-glucose deprivation (OGD) in hippocampal slices. Adenosine plays an apparently contradictory role in this receptor subtype depending on whether it is activated on neuro-glial cells or peripheral blood vessels and/or inflammatory cells after ischemia. Indeed, A2BRs participate in the early glutamate-mediated excitotoxicity responsible for neuronal and synaptic loss in the CA1 hippocampus. On the contrary, later after ischemia, the same receptors have a protective role in tissue damage and functional impairments, reducing inflammatory cell infiltration and neuroinflammation by central and/or peripheral mechanisms. Of note, demyelination following brain ischemia, or autoimmune neuroinflammatory reactions, are also profoundly affected by A2BRs since they are expressed by oligodendroglia where their activation inhibits cell maturation and expression of myelin-related proteins. In conclusion, data in the literature indicate the A2BRs as putative therapeutic targets for the still unmet treatment of stroke or demyelinating diseases.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Enfermedades Desmielinizantes/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Receptores de Adenosina A2/química , Animales , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Enfermedades Desmielinizantes/metabolismo , Enfermedades Desmielinizantes/patología , Humanos , Transducción de Señal
4.
Neurobiol Dis ; 96: 47-53, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27567601

RESUMEN

The initial goal of this study was to investigate alterations in adenosine A2A receptor (A2AR) density or function in a rat model of Huntington disease (HD) with reported insensitivity to an A2AR antagonist. Unsuspected negative results led to the hypothesis of a low striatal adenosine tone and to the search for the mechanisms involved. Extracellular striatal concentrations of adenosine were measured with in vivo microdialysis in two rodent models of early neuropathological stages of HD disease, the Tg51 rat and the zQ175 knock-in mouse. In view of the crucial role of the equilibrative nucleoside transporter (ENT1) in determining extracellular content of adenosine, the binding properties of the ENT1 inhibitor [3H]-S-(4-Nitrobenzyl)-6-thioinosine were evaluated in zQ175 mice and the differential expression and differential coexpression patterns of the ENT1 gene (SLC29A1) were analyzed in a large human cohort of HD disease and controls. Extracellular striatal levels of adenosine were significantly lower in both animal models as compared with control littermates and striatal ENT1 binding sites were significantly upregulated in zQ175 mice. ENT1 transcript was significantly upregulated in HD disease patients at an early neuropathological severity stage, but not those with a higher severity stage, relative to non-demented controls. ENT1 transcript was differentially coexpressed (gained correlations) with several other genes in HD disease subjects compared to the control group. The present study demonstrates that ENT1 and adenosine constitute biomarkers of the initial stages of neurodegeneration in HD disease and also predicts that ENT1 could constitute a new therapeutic target to delay the progression of the disease.


Asunto(s)
Biomarcadores/metabolismo , Cuerpo Estriado/metabolismo , Regulación de la Expresión Génica/genética , Enfermedad de Huntington/patología , Proteínas de Transporte de Nucleósidos/metabolismo , Corteza Prefrontal/metabolismo , Adenosina/metabolismo , Antagonistas del Receptor de Adenosina A2/uso terapéutico , Animales , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Proteína Huntingtina/genética , Enfermedad de Huntington/complicaciones , Enfermedad de Huntington/genética , Locomoción/genética , Trastornos Psicomotores/tratamiento farmacológico , Trastornos Psicomotores/etiología , Purinas/uso terapéutico , Ratas , Ratas Transgénicas , Receptor de Adenosina A2A/metabolismo , Triazinas/farmacocinética , Triazoles/farmacocinética , Expansión de Repetición de Trinucleótido/genética , Tritio/farmacocinética
5.
Neurol Sci ; 36(8): 1441-8, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25805704

RESUMEN

Evidence indicates that the adenosine A2A receptor subtype is of critical importance in stroke. In previous studies, in the model of permanent middle cerebral artery occlusion (pMCAo), the adenosine A2A receptor antagonist, SCH58261, administered soon after ischemia, proved protective against excessive glutamate outflow in the first 4 h after ischemia and against neurological deficit and tissue damage evaluated 24 h after pMCAo. In the present work, we investigated if neuroprotective effect of SCH58261 was maintained 7 days after transient MCAo (tMCAo). SCH58261 (0.01 mg/kg, i.p.), administered twice/day for 7 days, protected from neurological deficit 1 day after tMCAo, but no more after 5 and 7 days. Two days after tMCAo, SCH58261 did not reduce blood cell infiltration, evaluated as HIS-48 positive cells, into ischemic striatal and cortical tissue. Moreover, 7 days after tMCAo, SCH58261 has not protected ischemic areas from damage and has not ameliorated myelin organization into the ischemic striatum. Protection by the A2A receptor antagonist 24 h after ischemia is attributable to reduced excitotoxicity. Seven days after ischemia the early protective effect of the A2A receptor antagonist likely has been overwhelmed by a secondary damage due to blood cell infiltration and neuroinflammation.


Asunto(s)
Antagonistas del Receptor de Adenosina A2/uso terapéutico , Lesiones Encefálicas/etiología , Lesiones Encefálicas/prevención & control , Ataque Isquémico Transitorio/complicaciones , Pirimidinas/uso terapéutico , Triazoles/uso terapéutico , Análisis de Varianza , Animales , Células Sanguíneas/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Lesiones Encefálicas/patología , Modelos Animales de Enfermedad , Masculino , Glicoproteína Asociada a Mielina/metabolismo , Examen Neurológico , Ratas , Ratas Wistar , Factores de Tiempo
6.
Mediators Inflamm ; 2014: 805198, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25165414

RESUMEN

The extracellular concentration of adenosine in the brain increases dramatically during ischemia. Adenosine A(2A) receptor is expressed in neurons and glial cells and in inflammatory cells (lymphocytes and granulocytes). Recently, adenosine A(2A) receptor emerged as a potential therapeutic attractive target in ischemia. Ischemia is a multifactorial pathology characterized by different events evolving in the time. After ischemia the early massive increase of extracellular glutamate is followed by activation of resident immune cells, that is, microglia, and production or activation of inflammation mediators. Proinflammatory cytokines, which upregulate cell adhesion molecules, exert an important role in promoting recruitment of leukocytes that in turn promote expansion of the inflammatory response in ischemic tissue. Protracted neuroinflammation is now recognized as the predominant mechanism of secondary brain injury progression. A(2A) receptors present on central cells and on blood cells account for important effects depending on the time-related evolution of the pathological condition. Evidence suggests that A(2A) receptor antagonists provide early protection via centrally mediated control of excessive excitotoxicity, while A(2A) receptor agonists provide protracted protection by controlling massive blood cell infiltration in the hours and days after ischemia. Focus on inflammatory responses provides for adenosine A(2A) receptor agonists a wide therapeutic time-window of hours and even days after stroke.


Asunto(s)
Isquemia Encefálica/inmunología , Isquemia Encefálica/metabolismo , Receptor de Adenosina A2A/metabolismo , Animales , Citocinas/metabolismo , Humanos
7.
Biomolecules ; 13(6)2023 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-37371474

RESUMEN

In recent years, the use of multi-target compounds has become an increasingly pursued strategy to treat complex pathologies, including cerebral ischemia. Adenosine and its receptors (A1AR, A2AAR, A2BAR, A3AR) are known to play a crucial role in synaptic transmission either in normoxic or ischemic-like conditions. Previous data demonstrate that the selective antagonism of A2AAR or A2BAR delays anoxic depolarization (AD) appearance, an unequivocal sign of neuronal injury induced by a severe oxygen-glucose deprivation (OGD) insult in the hippocampus. Furthermore, the stimulation of A2AARs or A2BARs by respective selective agonists, CGS21680 and BAY60-6583, increases pre-synaptic neurotransmitter release, as shown by the decrease in paired-pulse facilitation (PPF) at Schaffer collateral-CA1 synapses. In the present research, we investigated the effect/s of the newly synthesized dual A2AAR/A2BAR antagonist, P626, in preventing A2AAR- and/or A2BAR-mediated effects by extracellular recordings of synaptic potentials in the CA1 rat hippocampal slices. We demonstrated that P626 prevented PPF reduction induced by CGS21680 or BAY60-6583 and delayed, in a concentration-dependent manner, AD appearance during a severe OGD. In conclusion, P626 may represent a putative neuroprotective compound for stroke treatment with the possible translational advantage of reducing side effects and bypassing differences in pharmacokinetics due to combined treatment.


Asunto(s)
Adenosina , Hipocampo , Ratas , Animales , Adenosina/farmacología , Isquemia , Transmisión Sináptica , Hipoxia , Oxígeno/farmacología , Plasticidad Neuronal , Glucosa/farmacología
8.
J Cereb Blood Flow Metab ; 43(7): 1077-1088, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36823998

RESUMEN

Multicentre preclinical randomized controlled trials (pRCTs) are a valuable tool to improve experimental stroke research, but are challenging and therefore underused. A common challenge regards the standardization of procedures across centres. We here present the harmonization phase for the quantification of sensorimotor deficits by composite neuroscore, which was the primary outcome of two multicentre pRCTs assessing remote ischemic conditioning in rodent models of ischemic stroke. Ischemic stroke was induced by middle cerebral artery occlusion for 30, 45 or 60 min in mice and 50, 75 or 100 min in rats, allowing sufficient variability. Eleven animals per species were video recorded during neurobehavioural tasks and evaluated with neuroscore by eight independent raters, remotely and blindly. We aimed at reaching an intraclass correlation coefficient (ICC) ≥0.60 as satisfactory interrater agreement. After a first remote training we obtained ICC = 0.50 for mice and ICC = 0.49 for rats. Errors were identified in animal handling and test execution. After a second remote training, we reached the target interrater agreement for mice (ICC = 0.64) and rats (ICC = 0.69). In conclusion, a multi-step, online harmonization phase proved to be feasible, easy to implement and highly effective to align each centre's behavioral evaluations before project's interventional phase.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Ratas , Ratones , Animales , Infarto de la Arteria Cerebral Media , Ensayos Clínicos Controlados Aleatorios como Asunto
9.
Front Pharmacol ; 11: 588757, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33643036

RESUMEN

Cerebral ischemia is a multifactorial pathology characterized first by an acute injury, due to excitotoxicity, followed by a secondary brain injury that develops hours to days after ischemia. During ischemia, adenosine acts as an endogenous neuroprotectant. Few studies have investigated the role of A2B receptor in brain ischemia because of the low potency of adenosine for it and the few selective ligands developed so far. A2B receptors are scarcely but widely distributed in the brain on neurons, glial and endothelial cells and on hematopoietic cells, lymphocytes and neutrophils, where they exert mainly anti-inflammatory effects, inhibiting vascular adhesion and inflammatory cells migration. Aim of this work was to verify whether chronic administration of the A2B agonist, BAY60-6583 (0.1 mg/kg i.p., twice/day), starting 4 h after focal ischemia induced by transient (1 h) Middle Cerebral Artery occlusion (tMCAo) in the rat, was protective after the ischemic insult. BAY60-6583 improved the neurological deficit up to 7 days after tMCAo. Seven days after ischemia BAY60-6583 reduced significantly the ischemic brain damage in cortex and striatum, counteracted ischemia-induced neuronal death, reduced microglia activation and astrocytes alteration. Moreover, it decreased the expression of TNF-α and increased that of IL-10 in peripheral plasma. Two days after ischemia BAY60-6583 reduced blood cell infiltration in the ischemic cortex. The present study indicates that A2B receptors stimulation can attenuate the neuroinflammation that develops after ischemia, suggesting that A2B receptors may represent a new interesting pharmacological target to protect from degeneration after brain ischemia.

10.
Biochem Pharmacol ; 177: 113956, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32251679

RESUMEN

Oligodendrocytes are the only myelinating cells in the brain and differentiate from their progenitors (OPCs) throughout adult life. However, this process fails in demyelinating pathologies. Adenosine is emerging as an important player in OPC differentiation and we recently demonstrated that adenosine A2A receptors inhibit cell maturation by reducing voltage-dependent K+ currents. No data are available to date about the A2B receptor (A2BR) subtype. The bioactive lipid mediator sphingosine-1-phosphate (S1P) and its receptors (S1P1-5) are also crucial modulators of OPC development. An interaction between this pathway and the A2BR is reported in peripheral cells. We studied the role of A2BRs in modulating K+ currents and cell differentiation in OPC cultures and we investigated a possible interplay with S1P signaling. Our data indicate that the A2BR agonist BAY60-6583 and its new analogue P453 inhibit K+ currents in cultured OPC and the effect was prevented by the A2BR antagonist MRS1706, by K+ channel blockers and was differently modulated by the S1P analogue FTY720-P. An acute (10 min) exposure of OPCs to BAY60-6583 also increased the phosphorylated form of sphingosine kinase 1 (SphK1). A chronic (7 days) treatment with the same agonist decreased OPC differentiation whereas SphK1/2 inhibition exerted the opposite effect. Furthermore, A2BR was overexpressed during OPC differentiation, an effect prevented by the pan SphK1/2 inhibitor VPC69047. Finally, A2BR silenced cells showed increased cell maturation, decreased SphK1 expression and enhanced S1P lyase levels. We conclude that A2BRs inhibit K+ currents and cell differentiation and positively modulate S1P synthesis in cultured OPCs.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Lisofosfolípidos/farmacología , Células Precursoras de Oligodendrocitos/metabolismo , Canales de Potasio/metabolismo , Receptor de Adenosina A2B/metabolismo , Esfingosina/análogos & derivados , Aminopiridinas/farmacología , Animales , Células Cultivadas , Humanos , Células Precursoras de Oligodendrocitos/citología , Células Precursoras de Oligodendrocitos/efectos de los fármacos , Organofosfatos/farmacología , Fosforilación/efectos de los fármacos , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Purinas/farmacología , Interferencia de ARN , Ratas Wistar , Receptor de Adenosina A2B/genética , Transducción de Señal/efectos de los fármacos , Esfingosina/farmacología , Receptores de Esfingosina-1-Fosfato/metabolismo
11.
BMJ Open Sci ; 4(1): e100063, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-35047692

RESUMEN

INTRODUCTION: Multicentre preclinical randomised controlled trials (pRCT) are emerging as a necessary step to confirm efficacy and improve translation into the clinic. The aim of this project is to perform two multicentre pRCTs (one in rats and one in mice) to investigate the efficacy of remote ischaemic conditioning (RIC) in an experimental model of severe ischaemic stroke. METHODS AND ANALYSIS: Seven research laboratories within the Italian Stroke Organization (ISO) Basic Science network will participate in the study. Transient endovascular occlusion of the proximal right middle cerebral artery will be performed in two species (rats and mice) and in both sexes. Animals will be randomised to receive RIC by transient surgical occlusion of the right femoral artery, or sham surgery, after reperfusion. Blinded outcome assessment will be performed for dichotomised functional neuroscore (primary endpoint) and infarct volume (secondary endpoint) at 48 hours. A sample size of 80 animals per species will yield 82% power to detect a significant difference of 30% in the primary outcome in both pRCTs. Analyses will be performed in a blind status and according to an intention-to-treat paradigm. The results of this study will provide robust, translationally oriented, high-quality evidence on the efficacy of RIC in multiple species of rodents with large ischaemic stroke. ETHICS AND DISSEMINATION: This is approved by the Animal Welfare Regulatory Body of the University of Milano Bicocca, under project license from the Italian Ministry of Health. Trial results will be subject to publication according to the definition of the outcome presented in this protocol. TRIAL REGISTRATION NUMBER: PCTE0000177.

12.
Pain ; 160(5): 1103-1118, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31008816

RESUMEN

Recently, studies have focused on the antihyperalgesic activity of the A3 adenosine receptor (A3AR) in several chronic pain models, but the cellular and molecular basis of this effect is still unknown. Here, we investigated the expression and functional effects of A3AR on the excitability of small- to medium-sized, capsaicin-sensitive, dorsal root ganglion (DRG) neurons isolated from 3- to 4-week-old rats. Real-time quantitative polymerase chain reaction experiments and immunofluorescence analysis revealed A3AR expression in DRG neurons. Patch-clamp experiments demonstrated that 2 distinct A3AR agonists, Cl-IB-MECA and the highly selective MRS5980, inhibited Ca-activated K (KCa) currents evoked by a voltage-ramp protocol. This effect was dependent on a reduction in Ca influx via N-type voltage-dependent Ca channels, as Cl-IB-MECA-induced inhibition was sensitive to the N-type blocker PD173212 but not to the L-type blocker, lacidipine. The endogenous agonist adenosine also reduced N-type Ca currents, and its effect was inhibited by 56% in the presence of A3AR antagonist MRS1523, demonstrating that the majority of adenosine's effect is mediated by this receptor subtype. Current-clamp recordings demonstrated that neuronal firing of rat DRG neurons was also significantly reduced by A3AR activation in a MRS1523-sensitive but PD173212-insensitive manner. Intracellular Ca measurements confirmed the inhibitory role of A3AR on DRG neuronal firing. We conclude that pain-relieving effects observed on A3AR activation could be mediated through N-type Ca channel block and action potential inhibition as independent mechanisms in isolated rat DRG neurons. These findings support A3AR-based therapy as a viable approach to alleviate pain in different pathologies.


Asunto(s)
Ganglios Espinales/citología , Neuronas/metabolismo , Receptor de Adenosina A3/metabolismo , Potenciales de Acción/efectos de los fármacos , Adenosina/análogos & derivados , Adenosina/farmacología , Antagonistas del Receptor de Adenosina A1/farmacología , Agonistas del Receptor de Adenosina A3/farmacología , Animales , Calcio/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio/farmacología , Células Cultivadas , Dipéptidos/farmacología , Relación Dosis-Respuesta a Droga , Femenino , Masculino , Neuronas/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptor de Adenosina A3/genética , Bloqueadores de los Canales de Sodio/farmacología , Tetrodotoxina/farmacología
13.
Front Pharmacol ; 9: 1231, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30420807

RESUMEN

Cerebral ischemia is a multifactorial pathology characterized by different events evolving in time. The acute injury, characterized by excitoxicity, is followed by a secondary brain injury that develops from hours to days after ischemia. Extracellular levels of histamine increase in the ischemic area after focal cerebral ischemia induced by occlusion of the middle cerebral artery (MCAo). The histamine H4 receptor (H4R) is predominantly expressed in cell types of immune system where is involved in the regulation of immunological and inflammatory responses, and in numerous area of the Central Nervous System (CNS) including cortex and striatum. Our aim was to assess the putative neuroprotective effects of the potent and selective H4R antagonist, JNJ7777120 (JNJ), chronically administered (1 mg/kg, i.p., twice/day for 7 days) on damage parameters in a rat model of focal ischemia induced by transient MCAo (tMCAo). Chronic treatment with the H4R antagonist JNJ, significantly protected from the neurological deficit and from body weight loss after tMCAo. Seven days after the ischemic insult, JNJ reduced the volume of the ischemic cortical and striatal damage, the number of activated microglia and astrocytes in the ischemic cortex and striatum and decreased the plasma levels of IL-1ß and TNF-α, while increased the levels of IL-10. Two days after ischemia, JNJ has reduced granulocyte infiltration in the ischemic area. Results demonstrate that the selective antagonist of H4R, JNJ, systemically and chronically administered after ischemia, reduces the ischemic brain damage, improves the neurological deficit and decreases blood pro-inflammatory cytokines, suggesting that H4R is a valuable pharmacological target after focal brain ischemia.

14.
Front Pharmacol ; 9: 399, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29740323

RESUMEN

Ischemia is a multifactorial pathology characterized by different events evolving in time. Immediately after the ischemic insult, primary brain damage is due to the massive increase of extracellular glutamate. Adenosine in the brain increases dramatically during ischemia in concentrations able to stimulate all its receptors, A1, A2A, A2B, and A3. Although adenosine exerts clear neuroprotective effects through A1 receptors during ischemia, the use of selective A1 receptor agonists is hampered by their undesirable peripheral side effects. So far, no evidence is available on the involvement of adenosine A2B receptors in cerebral ischemia. This study explored the role of adenosine A2B receptors on synaptic and cellular responses during oxygen and glucose deprivation (OGD) in the CA1 region of rat hippocampus in vitro. We conducted extracellular recordings of CA1 field excitatory post-synaptic potentials (fEPSPs); the extent of damage on neurons and glia was assessed by immunohistochemistry. Seven min OGD induced anoxic depolarization (AD) in all hippocampal slices tested and completely abolished fEPSPs that did not recover after return to normoxic condition. Seven minutes OGD was applied in the presence of the selective adenosine A2B receptor antagonists MRS1754 (500 nM) or PSB603 (50 nM), separately administered 15 min before, during and 5 min after OGD. Both antagonists were able to prevent or delay the appearance of AD and to modify synaptic responses after OGD, allowing significant recovery of neurotransmission. Adenosine A2B receptor antagonism also counteracted the reduction of neuronal density in CA1 stratum pyramidale, decreased apoptosis at least up to 3 h after the end of OGD, and maintained activated mTOR levels similar to those of controls, thus sparing neurons from the degenerative effects caused by the simil-ischemic conditions. Astrocytes significantly proliferated in CA1 stratum radiatum already 3 h after the end of OGD, possibly due to increased glutamate release. A2Breceptor antagonism significantly prevented astrocyte modifications. Both A2B receptor antagonists did not protect CA1 neurons from the neurodegeneration induced by glutamate application, indicating that the antagonistic effect is upstream of glutamate release. The selective antagonists of the adenosine A2B receptor subtype may thus represent a new class of neuroprotective drugs in ischemia.

15.
Neuropharmacology ; 104: 105-30, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26581499

RESUMEN

Ischemia is a multifactorial pathology characterized by different events evolving in the time. After ischemia a primary damage due to the early massive increase of extracellular glutamate is followed by activation of resident immune cells, i.e microglia, and production or activation of inflammation mediators. Protracted neuroinflammation is now recognized as the predominant mechanism of secondary brain injury progression. Extracellular concentrations of ATP and adenosine in the brain increase dramatically during ischemia in concentrations able to stimulate their respective specific P2 and P1 receptors. Both ATP P2 and adenosine P1 receptor subtypes exert important roles in ischemia. Although adenosine exerts a clear neuroprotective effect through A1 receptors during ischemia, the use of selective A1 agonists is hampered by undesirable peripheral effects. Evidence up to now in literature indicate that A2A receptor antagonists provide protection centrally by reducing excitotoxicity, while agonists at A2A (and possibly also A2B) and A3 receptors provide protection by controlling massive infiltration and neuroinflammation in the hours and days after brain ischemia. Among P2X receptors most evidence indicate that P2X7 receptor contribute to the damage induced by the ischemic insult due to intracellular Ca(2+) loading in central cells and facilitation of glutamate release. Antagonism of P2X7 receptors might represent a new treatment to attenuate brain damage and to promote proliferation and maturation of brain immature resident cells that can promote tissue repair following cerebral ischemia. Among P2Y receptors, antagonists of P2Y12 receptors are of value because of their antiplatelet activity and possibly because of additional anti-inflammatory effects. Moreover strategies that modify adenosine or ATP concentrations at injury sites might be of value to limit damage after ischemia. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.


Asunto(s)
Adenosina Trifosfato/metabolismo , Adenosina/metabolismo , Isquemia Encefálica/metabolismo , Receptores Purinérgicos P1/metabolismo , Receptores Purinérgicos P2/metabolismo , Animales , Encefalitis/metabolismo , Humanos , Antagonistas de Receptores Purinérgicos P1/farmacología , Antagonistas del Receptor Purinérgico P2/farmacología , Transducción de Señal
17.
Front Cell Neurosci ; 9: 155, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25964740

RESUMEN

Differentiation and maturation of oligodendroglial cells are postnatal processes that involve specific morphological changes correlated with the expression of stage-specific surface antigens and functional voltage-gated ion channels. A small fraction of oligodendrocyte progenitor cells (OPCs) generated during development are maintained in an immature and slowly proliferative or quiescent state in the adult central nervous system (CNS) representing an endogenous reservoir of immature cells. Adenosine receptors are expressed by OPCs and a key role of adenosine in oligodendrocyte maturation has been recently recognized. As evaluated on OPC cultures, adenosine, by stimulating A1 receptors, promotes oligodendrocyte maturation and inhibits their proliferation; on the contrary, by stimulating A2A receptors, it inhibits oligodendrocyte maturation. A1 and A2A receptor-mediated effects are related to opposite modifications of outward delayed rectifying membrane K(+) currents (IK) that are involved in the regulation of oligodendrocyte differentiation. Brain A1 and A2A receptors might represent new molecular targets for drugs useful in demyelinating pathologies, such as multiple sclerosis (MS), stroke and brain trauma.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA