Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Fluoresc ; 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38457074

RESUMEN

This study emphasis the solvent effect on third-order nonlinear optical (NLO) features of methyl red (MR) dye dissolved in polar solvents including ethanol, methanol, acetone, 1-propanol, DMF and DMSO using low power diode laser. Z-scan technique operating at 405 nm wavelength, is used to estimate the third-order NLO features of MR dye in various solvents. The dye discloses self-defocusing nonlinear index of refraction (n2), which is determined to be the order of 10-7 cm2/W. The nonlinear coefficient of absorption (ß) of MR dye displays both negative and positive value owing to saturable absorption (SA) and reverse saturable absorption (RSA), respectively. The real and imaginary components of the third-order NLO susceptibility of MR dye in polar solvents are measured to be the order of 10-6 esu and 10-7 esu, respectively. The dye exhibits a large NLO susceptibility in DMSO, which is estimated to be 1.21 × 10-6 esu. The effect of solvent spectral features on MR dye is determined by applying a multi-parameter scale called Kamlet-Abboud-Taft. The experiment results indicate that MR dye is a promising NLO material that may find applications in photonics and optoelectronics.

2.
J Fluoresc ; 2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38460094

RESUMEN

Herein, we report the nonlinear optical (NLO) refraction and absorption features of azo dye namely, methyl orange (MO) dissolved in ethanol, methanol, acetone, 1-propanol, DMF and DMSO. The UV-Visible absorption study reveals that the maximum absorption spectrum of MO dye appeared towards longer wavelength by increasing the solvent polarizability is the result of red shift or bathochromic shift. The Z-scan method is utilized to measure the third-order NLO features of MO dye in different polar solvents. A continuous wave laser with 5-mW power and an excitation wavelength of 405 nm is employed in the Z-scan technique. The NLO features including nonlinear index of refraction (n2), nonlinear coefficient of absorption (ß) and third-order NLO susceptibility (χ3) are calculated to be the order of 10-7 cm2/W, 10-2 cm/W and 10-7 esu, respectively. The NLO index of refraction shows peak-valley transmittance is the result of self-defocusing and NLO absorption coefficient exhibits both positive and negative nonlinearity owing to saturable absorption (SA) and reverse saturable absorption (RSA). The effect of solvent polarizability and dipole moment on third-order NLO susceptibility of MO dye is discussed. Based on the experimental results, an azo dye MO appears to be a promising option for NLO applications in the future.

3.
Environ Res ; 242: 117763, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38029828

RESUMEN

The Andrographis paniculata recognized as most valuable medicinal plant in folk medicine. Hence, this research was designed to evaluate antibacterial potential of petroleum ether (PE) and methanol (ME) extracts of A. paniculata against skin infection causing bacterial pathogens such as Staphylococcus aureus, Streptococcus pyogenes, Klebsiella pneumoniae, Enterobacter aerogenes, Proteus vulgaris, and Propionibacterium acnes. Also assessed the antidiabetic (α-glucosidase and α-amylase inhibition assay), antioxidant, and photoprotective potential of PE and ME extract analyses. The major bioactive compounds were identified and characterized through UV, FTIR, 1H-NMR and 13C-NMR spectra analyses. The ME extract contain more number of phytochemicals (alkaloids, flavonoids, saponins, terpenoids, glycoside, protein, and phytosterol) than PE extract. The antibacterial activity result also revealed that the ME (as dose dependent) extract showed better activity at 250 mg mL-1 as in the following order: P. acnes (6-29 mm) > K. pneumoniae (3-28 mm) > S. aureus (3-27 mm) > P. vulgaris (3-26 mm) > S. pyogenes (2-25 mm) > E. aerogenes (1-23 mm). PE: E. aerogenes (3-20 mm) > P. vulgaris (2-19 mm) > P. acnes (3-18 mm) > K. pneumoniae (3-17 mm) > S. aureus (2-16 mm) > S. pyogenes (0-11 mm). The MIC value of ME extract was found as 100-150 mg mL-1 and it was better than PE extract. Similarly, the ME also possesses dose based α-glucosidase inhibition activity as up to 85% at 250 mg mL-1 concentration. The fluorescence spectra analysis method also stated that the ME extract possess photoprotective bioactive agent. The ME fractions (F01 and F02) obtained from TLC and column chromatogram were identified as 3-O-ß-d-glucosyl-14- deoxyandrographiside and 14-deoxyandrographolide respectively through UV, FTIR, 1H-NMR and 13C-NMR spectra analyses. Such compounds may be responsible for significant antibacterial activity against pathogenic bacteria causing skin infections, excellent antidiabetic activity, as well as photoprotective potential.


Asunto(s)
Andrographis paniculata , Extractos Vegetales , Extractos Vegetales/farmacología , Extractos Vegetales/química , Staphylococcus aureus , alfa-Glucosidasas , Antibacterianos/farmacología , Hipoglucemiantes/farmacología , Solventes , Metanol
4.
Environ Res ; 248: 118348, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38295976

RESUMEN

The antimicrobial, antidiabetic, and anti-inflammatory activities efficiency of Aerva lanata plant extracts (aqueous (Aqu-E), acetone (Ace-E), and ethanol (Eth-E)) were investigated in this study. Furthermore, the active molecules exist in the crude extract were characterized by UV-Visible spectrophotometer, Fourier transform infrared (FTIR), High-performance liquid chromatography (HPLC), and Gas Chromatography-Mass Spectrometry (GC-MS) analyses. The preliminary phytochemical study revealed that the Ace-E restrain more phytochemicals like alkaloids, saponins, anthraquinone, tannins, phenolics, flavonoids, glycosides, terpenoids, amino acid, steroids, protein, coumarin, as well as quinine than Aqu-E and Eth-E. Accordingly to this Ace-E showed considerable antimicrobial activity as the follows: for bacteria S. aureus > E. coli > K. pneumoniae > P. aeruginosa > B. subtilis and for fungi T. viride > A.flavus > C. albicans > A.niger at 30 mg ml concentration. Similarly, Ace-E showed considerable antidiabetic (α-amylase: 71.7 % and α-glucosidase: 70.1 %) and moderate anti-inflammatory (59 % and 49.8 %) activities. The spectral and chromatogram studies confirmed that the Ace-E have pharmaceutically valuable bioactive molecules such as (Nbutyl)-octadecane, propynoic acid, neophytadiene, and 5,14-di (N-butyl)-octadecane. These findings suggest that Ace-E from A. lanata can be used to purify additional bioactive substances and conduct individual compound-based biomedical application research.


Asunto(s)
Alcanos , Amaranthaceae , Antiinfecciosos , Acetona , Hipoglucemiantes , Escherichia coli , Staphylococcus aureus , Amaranthaceae/química , Antioxidantes , Antibacterianos
5.
Environ Res ; 258: 119474, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38914253

RESUMEN

In this study, we studied the conversion of Jatropha curcas oil to biodiesel by using three distinct reactor systems: microchannel, fixed bed, and microwave reactors. ZSM-5 was used as the catalyst for this conversion and was thoroughly characterized. X-ray diffraction was used to identify the crystalline structure, Brunauer-Emmett-Teller analysis to determine surface area, and temperature-programmed desorption to evaluate thermal stability and acidic properties. These characterizations provided crucial insights into the catalyst's structural integrity and performance under reaction conditions. The microchannel reactor exhibited superior biodiesel yield compared to the fixed bed and microwave reactors, and achieved peak efficiency at 60 °C, delivering high FAEE yield (99.7%) and conversion rates (99.92%). Ethanol catalyst volume at 1% was optimal, while varying flow rates exhibited trade-offs, emphasizing the need for nuanced control. Comparative studies against microwave and fixed-bed reactors consistently favored the microchannel reactor, emphasizing its remarkable FAME percentages, high conversion rates, and adaptability to diverse operating conditions. The zig-zag configuration enhances its efficiency, making it the optimal choice for biodiesel production and showcasing promising prospects for advancing sustainable biofuel synthesis technologies.

6.
Environ Res ; 251(Pt 1): 118632, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38467361

RESUMEN

Visual impairment due to corneal keratitis-causing bacteria is becoming a matter of health concern. The bacterial colonization and their resistance to multiple drugs need imperative attention. To overcome the issue of alternative remedial therapeutic agents, particularly for topical application, a study was carried out to synthesize calcium oxide nanoparticles (CaO NPs) using the biomaterial Eleusine coracana seed aqueous extract. The biosynthesized calcium oxide nanoparticles (CaO NPs) are non-toxic or less-toxic chemical precursors. Moreover, CaO NPs are eco-friendly and are used for several industrial, biomedical, and environmental applications. Biosynthesized CaO NPs were characterized using ultraviolet-visible spectroscopy, Fourier transform-infrared spectroscopy, scanning electron microscopy, and dynamic light scattering study. The synthesized CaO NPs exhibit with good anti-inflammatory activities with dose dependant (50-250 µg/mL). Moreover, Eleusine coracana-mediated CaO NPs significantly inhibited the multiple drug-resistant Gram-positive Staphylococci epidermidis and Enterococcus faecalis and Gram-negative Escherichia coli and Klebsiella pneumoniae that were isolated from the corneal ulcer. This study provides a potential therapeutic option for multiple drug-resistant corneal pathogens that cause vision impairment.


Asunto(s)
Antibacterianos , Compuestos de Calcio , Eleusine , Nanopartículas , Extractos Vegetales , Semillas , Extractos Vegetales/química , Extractos Vegetales/farmacología , Compuestos de Calcio/química , Compuestos de Calcio/farmacología , Semillas/química , Nanopartículas/química , Antibacterianos/farmacología , Eleusine/química , Óxidos/química , Óxidos/farmacología , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Pruebas de Sensibilidad Microbiana
7.
Environ Res ; 242: 117753, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38008204

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are potentially hazardous compounds that could cause a severe impact on many ecosystems. They are very challenging to remove using conventional methods due to their hydrophobic nature. However, this issue can be resolved by utilizing surface-active molecules to increase their bioavailability. In this study, pyrene was chosen as the PAH compound to explore its degradability by the effect of individual bacterial strains (Pseudomonas stutzeri NA3 and Acinetobacter baumannii MN3) and mixed consortia (MC) along with natural surfactant derived from Sapindus mukorossi and iron oxide nanoparticles (NPs). Additionally, fatty acids esters, dipeptides, and sugar derivative groups were identified as potent bioactive components of natural surfactants. Various techniques, such as XRD, VSM, TEM, and FE-SEM with EDX, were utilized to characterize the pristine and Fenton-treated iron oxide NPs. The analytical results confirmed that the Fe3O4 crystal phase and spherical-shaped NPs exhibited excellent magnetic properties. The impact of natural surfactants and iron oxide NPs has significantly contributed to the biodegradation process, resulting in a prominent decrease in chemical oxygen demand (COD) levels. Gas chromatography-mass spectrometry (GC-MS) analysis showed that biodegradation systems produced primary hydrocarbon intermediates, which underwent oxidative degradation through Fenton treatment. Interestingly, synthesized iron oxide NPs effectively produced hydroxyl radical (•OH) during the Fenton reaction, which was confirmed by electron paramagnetic resonance (EPR) spectra, and the pristine iron oxide NPs underwent a material transformation observed. The study demonstrated an integrated approach for biodegradation and the Fenton reaction process to enhance the pyrene degradation efficiency (90%) compared to other systems. Using natural surfactants and iron oxide NPs in aquatic environments serves as a crucial platform at the interface of microorganisms and contaminated oil products. This interaction offers a promising solution for PAHs bioremediation.


Asunto(s)
Compuestos Férricos , Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Tensoactivos/química , Biodegradación Ambiental , Ecosistema , Contaminantes del Suelo/análisis , Pirenos/metabolismo , Hidrocarburos Policíclicos Aromáticos/metabolismo , Bacterias/metabolismo , Nanopartículas Magnéticas de Óxido de Hierro
8.
Environ Res ; 244: 117911, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38104919

RESUMEN

Poly aromatic hydrocarbons (PAHs) are considered as hazardous compounds which causes serious threat to the environment dua to their more carcinogenic and mutagenic impacts. In this study, Pseudomonas aeruginosa PP4 strain and synthesized iron nanoparticles were used to evaluate the biodegradation efficiency (BE %) of residual anthracene. The BE (%) of mixed degradation system (Anthracene + PP4+ FeNPs) was obtained about 67 %. The FTIR spectra result revealed the presence of functional groups (C-H, -CH3, CC, =C-H) in the residual anthracene. The FESEM and TEM techniques were used to determine the surface analysis of the synthesized FeNPs and the average size was observed by TEM around 5-50 nm. The crystalline nature of the synthesized iron nanoparticles was confirmed by the observed different respective peaks of XRD pattern. The various functional constituents (OH, C-H, amide I, CH3) were identified in the synthesized iron nanoparticles by FTIR spectrum. In conclusion, this integrated nano-bioremediation approach could be an promising and effective way for many environmental fields like cleanup of hydrocarbon rich environment.


Asunto(s)
Antracenos , Pseudomonas aeruginosa , Antracenos/metabolismo , Hierro , Biodegradación Ambiental , Nanopartículas Magnéticas de Óxido de Hierro
9.
Environ Geochem Health ; 46(2): 30, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38227286

RESUMEN

The removal of color-causing compounds from wastewater is a significant challenge that industries encounter due to their toxic, carcinogenic, and harmful properties. Despite the extensive research and development of various techniques with the objective of effectively degrading color pollutants, the challenge still persists. This paper introduces a simple technique for producing iron oxide nanoparticles (Fe2O3 NPs) using orange fruit peel for sustainable dye degradation in aqueous environment. The observation of color change and the measurement of UV-visible absorbance at 240 nm provided a confirmation for the development of Fe2O3 NPs. Transmission electron microscopy examination demonstrated that the Fe2O3 NPs have an agglomerated distribution and forming spherical structures with size ranging from 25-80 nm. Energy-dispersive X-ray spectroscopy analysis supported the existence of Fe and O. Fourier transform infrared spectroscopy conducted to investigate the involvement of orange peel extract in the reduction, capping, and synthesis of Fe2O3 NPs from the precursor salt. Fe2O3 NPs showed a photocatalytic remediation of 97%, for methylene blue under visible light irradiation. Additionally, prepared NPs exhibited concentration depended biofilm inhibition action against E. coli and S. aureus. In conclusion, Fe2O3 NPs can efficiently purify water and suppress pathogens due to their strong degrading activity, reusability, and biofilm inhibition property.


Asunto(s)
Contaminantes Ambientales , Aguas Residuales , Escherichia coli , Frutas , Staphylococcus aureus , Nanopartículas Magnéticas de Óxido de Hierro , Extractos Vegetales
10.
Environ Geochem Health ; 46(7): 246, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38864996

RESUMEN

In the pursuit of efficient photocatalytic materials for environmental applications, a new series of g-C3N4/N-doped CeO2 nanocomposites (g-C3N4/N-CeO2 NCs) was synthesized using a straightforward dispersion method. These nanocomposites were systematically characterized to understand their structural, optical, and chemical properties. The photocatalytic performance of g-C3N4/N-CeO2 NCs was evaluated by investigating their ability to degrade methylene blue (MB) dye, a model organic pollutant. The results demonstrate that the integration of g-C3N4 with N-doped CeO2 NCs reduces the optical energy gap compared to pristine N-doped CeO2, leading to enhanced photocatalytic efficiency. It is benefited from the existence of g-C3N4/N-CeO2 NCs not only in promoting the charge separation and inhibits the fast charge recombination but also in improving photocatalytic oxidation performance. Hence, this study highlights the potential of g-C3N4/N-CeO2 NCs as promising candidates for various photocatalytic applications, contributing to the advancement of sustainable environmental remediation technologies.


Asunto(s)
Cerio , Luz , Azul de Metileno , Nanocompuestos , Azul de Metileno/química , Cerio/química , Nanocompuestos/química , Catálisis , Contaminantes Químicos del Agua/química , Grafito/química , Procesos Fotoquímicos , Fotólisis , Compuestos de Nitrógeno
11.
Environ Geochem Health ; 46(3): 95, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38374258

RESUMEN

Graphene-based nanocomposites are developing as a new class of materials with several uses. The varied weight percentages of rGO on Ag2S catalysts were synthesized using a simple hydrothermal process and employed for the decomposition of anionic dye naphthol green B (NGB) under solar light. The reduced graphene oxide-based silver sulfide (rGO/Ag2S) nanoparticles were then examined using XRD, SEM, EDS, HR-TEM, XPS, UV-DRS, and PL analysis. Using solar light, the photocatalytic activity of the produced catalyst was examined for the degradation of naphthol green B (NGB) in an aqueous solution. At pH 9, rGO/Ag2S is discovered to be more effective than the other catalysts for the NGB dye mineralization. Analyses have been conducted on the influence of operational parameters on the photo-mineralization of NGB, including the initial pH, initial dye concentration, and catalyst dosage. The dye concentration increased; the efficiency of photocatalytic degradation tended to decrease. Chemical oxygen demand (COD) studies have verified the NGB dye mineralization. Active species trapping revealed that holes, hydroxyl radicals, and superoxide radicals all played major roles in the photocatalytic deterioration of NGB processes. Additionally, a potential mechanism of NGB dye degradation by rGO/Ag2S catalyst is presented. The synthesized compound was further evaluated for antibacterial activity, and the results indicated that rGO/Ag2S were potentially effective antibacterial agents.


Asunto(s)
Antibacterianos , Compuestos Férricos , Nanopartículas , Antibacterianos/farmacología , Naftalenosulfonatos , Agua
12.
Environ Geochem Health ; 46(6): 200, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38696110

RESUMEN

Plant extracts are a great alternative to synthesizing nanoparticles of different metals and metal oxides. This green synthesis method has opened up numerous possibilities in various scientific domains. In present study, Leaf extract from Vitex negundo is a non-deciduous, long-lasting shrub from the Verbenaceae family is used as capping and reducing agents for the synthesis of silver and palladium nanoparticles. The characterization study UV-vis spectrophotometer analysis showed absorbance value around 320 nm which confirming that Ag-Pd nanoparticles have been successfully obtained. Further, SEM is used to investigate the morphology of Ag-Pd NPs, which revealing their spherical and rod-like configuration, aggregation, and the size of the particles are obtained between 50 and 100 nm. The successful synthesis of Ag-Pd NPs was further confirmed by the EDAX chart, which displayed the peak of Ag and Pd at bending energies between 0.5 and 1.5 keV. According to the quantitative study, Ag and Pd ions found about 5.24 and 13.28%, respectively. In addition, surface studies with TEM confirming that synthesized Ag-Pd NPs are predominates with spheres structure morphologies, with sizes averaging 11.20 nm and ranging from 10 to 20 nm. Further, Ag-Pd nanoparticles was applied as potential photocatalyst materials to degrade methylene blue dye and found about 85% of the degradation efficiency within 150 min of the sunlight exposure thus could be used as catalyst to removal of hazardous organic dye molecules.


Asunto(s)
Colorantes , Nanopartículas del Metal , Paladio , Plata , Vitex , Vitex/química , Paladio/química , Plata/química , Nanopartículas del Metal/química , Catálisis , Colorantes/química , Extractos Vegetales/química , Hojas de la Planta/química , Tecnología Química Verde , Fotólisis , Microscopía Electrónica de Transmisión
13.
Environ Geochem Health ; 46(6): 187, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38696018

RESUMEN

The presence of toxic trace elements (TEs) has resulted in a worldwide deterioration in freshwater ecosystem quality. This study aimed to analyze the distribution of TEs, including chromium (Cr), nickel (Ni), arsenic (As), mercury (Hg), cadmium (Cd), and lead (Pb), in water, sediment, and organs of Tilapia (Oreochromis mossambicus) collected from selected inland water bodies in Tamil Nadu, India. The water samples exhibited a range of concentrations for TEs: Cr varied from 0.014 to 5.193 µg/L, Ni ranged from 0.283 to 11.133 µg/L, As ranged from 0.503 to 1.519 µg/L, Cd from 0.001 to 0.616 µg/L, and Pb ranged from non-detectable (ND) to 6.103 µg/L. The concentrations of TEs in sediment were found to vary within the following ranges: 5.259 to 32.621 mg/kg for Cr, 1.932 to 30.487 mg/kg for Ni, 0.129 to 0.563 mg/kg for As, 0.003 to 0.011 mg/kg for Cd, ND to 0.003 mg/kg for Hg, and 0.404 to 1.575 mg/kg for Pb. The study found that the accumulation pattern of TE in fishes across all selected areas was liver > bone > gill > muscle. The organs had TE concentrations of Cr (ND-0.769 mg/kg), Ni (ND-1.053 mg/kg), As (0.002-0.080 mg/kg), Pb (ND-0.411 mg/kg), and Hg (ND-0.067 mg/kg), which was below the maximum residual limit prescribed by EC and FSSAI. The bioconcentration factor (BCF) of TEs exhibited a greater magnitude in comparison with the biota-sediment accumulation factor due to the higher concentration of TEs in fish and lower level in water. The assessment of both carcinogenic and non-carcinogenic risks suggests that the consumption of Tilapia from the study region does not pose any significant risks.


Asunto(s)
Bioacumulación , Sedimentos Geológicos , Tilapia , Oligoelementos , Contaminantes Químicos del Agua , Animales , Tilapia/metabolismo , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/metabolismo , Medición de Riesgo , Sedimentos Geológicos/química , Oligoelementos/análisis , Oligoelementos/metabolismo , India , Monitoreo del Ambiente , Metales Pesados/análisis , Humanos , Agua Dulce
14.
Environ Geochem Health ; 46(3): 81, 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38367190

RESUMEN

This study presents an environmentally sustainable method for minimizing sludge production in the textile effluent sector through the combined application of electrokinetic (EK) and electrooxidation (EO) processes. AAS and XRF analyses reveal that utilizing acidic electrolytes in the EK method successfully eliminates heavy metals (Cu, Mn, Zn, and Cr) from sludge, demonstrating superior efficiency compared to alkaline conditions. In addition, the total removal efficiency of COD contents was calculated following the order of EK-3 (60%), EK-1 (51%) and EK-2 (34%). Notably, EK-3, leveraging pH gradient fluctuations induced by anolyte in the catholyte reservoir, outperforms other EK systems in removing COD from sludge. The EK process is complemented by the EO process, leading to further degradation of dye and other organic components through the electrochemical generation of hypochlorite (940 ppm). At an alkaline pH of 10.0, the color and COD removal were effectively achieved at 98 and 70% in EO treatment, compared to other mediums. In addition, GC-MS identified N-derivative residues at the end of the EO. This study demonstrates an integrated approach that effectively eliminates heavy metals and COD from textile sludge, combining EK with EO techniques.


Asunto(s)
Metales Pesados , Aguas del Alcantarillado , Aguas del Alcantarillado/química , Metales Pesados/análisis , Textiles
15.
Environ Res ; 232: 116291, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37276971

RESUMEN

This research was performed to evaluate physico-chemical properties of farmland soil nearby the magnesite mine site. Unexpectedly, few physico-chemical properties were crossing the acceptable limits. Particularly, the quantities of Cd (112.34 ± 3.25), Pb (386.42 ± 11.71), Zn (854.28 ± 3.53), and Mn (2538 ± 41.11) were crossing the permissible limits. Among 11 bacterial cultures isolated from the metal contaminated soil, 2 isolates names as SS1 and SS3 showed significant multi-metal tolerance up to the concentration of 750 mg L-1. Furthermore, these strains also showed considerable metal mobilization as well as absorption ability on metal contaminated soil under in-vitro conditions. In a short duration of treatment, these isolates effectively mobilize and absorb the metals from the polluted soil. The results obtained from the greenhouse investigation with Vigna mungo revealed that the among various treatment (T1 to T5) groups, the T3 (V. mungo + SS1+SS3) showed remarkable phytoremediation potential (Pb: 50.88, Mn: 152, Cd: 14.54, and Zn: 67.99 mg kg-1) on metal contaminated soil. Furthermore, these isolates influence the growth as well as biomass of V. mungo under greenhouse conditions on metal contaminated soil. These findings suggest that combining multi-metal tolerant bacterial isolates can improve the phytoextraction efficiency of V. mungo on metal-contaminated soil.


Asunto(s)
Herpestidae , Metales Pesados , Contaminantes del Suelo , Vigna , Animales , Biodegradación Ambiental , Suelo/química , Cadmio/análisis , Vigna/metabolismo , Herpestidae/metabolismo , Plomo , Contaminantes del Suelo/análisis , Agricultura , Bacterias/genética , Bacterias/metabolismo , Metales Pesados/toxicidad , Metales Pesados/análisis
16.
Environ Res ; 222: 115370, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36716804

RESUMEN

Water contamination by reactive dyes is a serious concern for human health and the environment. In this study, we prepared high efficient SnO2/CuO/rGO nanocomposites for reactive dye degradation. For structural analysis of SnO2/CuO/rGO nanocomposites, XRD, UV-Vis DRS, SEM, TEM-EDAX, and XPS analysis were used to characterize the physicochemical properties of the material. The characterization results confirmed great crystallinity, purity, and optical characteristics features. For both Rhodamine B (RhB) and Reactive Red 120 (RR120) degradation processes, SnO2/CuO/rGO nanocomposites were tested for their photocatalytic degradation performance. The SnO2/CuO/rGO nanocomposites have expressed the degradation rate exposed to 99.6% of both RhB and RR120 dyes. The main reason behind the photocatalytic degradation was due to the formation of OH radical's generation by the composite materials. Moreover, the antibacterial properties of synthesized SnO2/CuO/rGO nanocomposites were studied against E. coli, S. aureus, B. subtilis and P. aeroginosa and exhibited good antibacterial activity against the tested bacterial strains. Thus, the synthesized SnO2/CuO/rGO nanocomposites are a promising photocatalyst and antibacterial agent. Furthermore, mechanisms behind the antibacterial effects will be ruled out in near future.


Asunto(s)
Contaminantes Ambientales , Nanocompuestos , Humanos , Escherichia coli , Staphylococcus aureus , Colorantes/química , Nanocompuestos/química , Antibacterianos/farmacología
17.
Environ Res ; 239(Pt 2): 117387, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37832767

RESUMEN

In recent years, g-C3N4-Ag nanocomposite synthesis has gained considerable attention for its potential to treat polycyclic aromatic hydrocarbons (PAHs) and to act against bacteria and fungi. In this study, we present a novel approach to the synthesis of g-C3N4-Ag nanocomposite and evaluate its efficiency in both PAH removal and antimicrobial activity. The synthesis process involved the preparation of g-C3N4 by thermal polycondensation of melamine. The factors that affect the adsorption process of PAHs, like time, pH, irradiation type, and adsorbent dosage, were also evaluated. Isotherm models like Langmuir and Freundlich determined the adsorption capability of g-C3N4-Ag. In simulated models, phenanthrene was degraded to a maximum of 85% at lower concentrations of catalyst. The adsorption profile of phenanthrene obeys the pseudo-second-order and Freundlich isotherms pattern. The g-C3N4-Ag nanocomposite also exhibited antimicrobial activity against bacteria (Escherichia coli, Bacillus subtilis, Staphylococcus aureus, Klebsiella pneumoniae) and fungi (Candida albicans). The present study is the first report stating the dual application of g-C3N4-Ag nanocomposite in reducing the concentration of PAH and killing bacterial and fungal pathogens. The higher adsorption capability proclaimed by g-C3N4-Ag nanocomposite shows the fabricated nanomaterial with great potential to remediate organic pollutants from the ecosystem.


Asunto(s)
Antiinfecciosos , Contaminantes Ambientales , Fenantrenos , Ecosistema , Contaminación Ambiental
18.
Environ Res ; 236(Pt 2): 116749, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37507040

RESUMEN

Nanotechnology is an emerging technology that uses medicinal plants to extract nanoparticles for conventional applications. In the present investigation, the medical plant Tulsi (Ocimum sanctum) has used in the synthesis of cobalt (Co) nanoparticles in a cost-effective, feasible process. The efficiency of nanoparticles in removing methyl orange dye was evaluated by analyzing their applications in wastewater treatment. An analysis of the anti-inflammatory and anti-cancer properties of Tulsi-mediated Co nanoparticles was conducted to examine their medical application. Morphological analysis of Co nanoparticles showed that the synthesized nanoparticles were in crystal shape with a mean particle size of 110 nm. A batch adsorption study has shown that incubation periods of 5 h, pH 2, temperatures of 70 °C, and adsorbent dosage of 125 µg/mL are optimal for removing methyl orange dye from wastewater. To examine the anti-inflammatory properties of Tulsi-mediated Co nanoparticles, protein denaturation and nitric oxide scavenging assays were performed. The maximum anti-inflammatory response was recorded at a concentration of 250 µg/mL of Co nanoparticles. MTT assays against MDA-MB-231 human breast cancer cells were used to evaluate the anti-cancer properties of Co nanoparticles. This study investigates the economical extraction of Co nanoparticles from tulsi and its potential use in wastewater purification and biomedical applications.

19.
Environ Res ; 236(Pt 1): 116718, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37481060

RESUMEN

In ancient times, herbal plants were considered one of the greatest gifts from nature that human beings could receive, and about 80% of these plants have medicinal uses. In traditional medicine, Mentha arvensis, commonly known as mint, has many applications, and in the present study, the mint leaf extract has been used to synthesis nanoparticles using the mint leaf extract as a biosource for the extraction of nanoparticles. In addition to having a wide range of applications in various fields, calcium oxide (CaO) nanoparticles are also considered to be safe for human use. In order to assess the characteristics of the abstracted CaO nanoparticles, UV-visible absorption spectrophotometers, Fourier Transform Infrared spectrophotometers (FTIR), Scanning Electron Microscopes (SEMs), Dynamic Light Scattering (DLS), and X-ray Diffraction Spectrophotometers (XRDs) were used. By conducting a protein denaturation assay and nitric oxide scavenging assay, mint leaf mediated CaO nanoparticles were evaluated for their therapeutic applications. MTT assays were used to prove that the CaO nanoparticles mediated by mint leaf had anti-cancer properties. By examining the ability of mint leaf mediated CaO nanoparticles to degrade various dyes such as methyl red, methyl orange, and methylene blue, which are the most used azo dyes in textile industries resulting in water contamination, the ability of these nanoparticles to act as a photocatalytic agent was examined.


Asunto(s)
Mentha , Nanopartículas del Metal , Nanopartículas , Humanos , Extractos Vegetales/farmacología , Colorantes , Difracción de Rayos X , Antiinflamatorios , Espectroscopía Infrarroja por Transformada de Fourier , Antibacterianos
20.
Environ Res ; 227: 115723, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37003548

RESUMEN

Three-dimensional multi-porous Iron Oxide/carbon (Fe2O3/C) composites derived from tamarind shell biomass were synthesized by a single-step co-pyrolysis technique and utilized for Paracetamol (PAC) dismissal in the combined adsorption, and advanced oxidation such as electrochemical regeneration techniques. The Fe2O3/C composites were prepared by different pyrolysis temperatures, and named as TS750 (without Fe2O3at 750 °C), MTS450 BCs (Low-450 °C), MTS600 BCs (Moderate-600 °C) and MTS750 BCs (high-750 °C), respectively. As-prepared Fe2O3/C composite was characterized by FE-SEM, XRD, BET, and XPS analysis. The specific surface area and the spatial interaction between the interlayers of Fe2O3 and C were significantly improved by increasing the pyrolysis temperatures from 450 to 750 °C, which improved the adsorption capacity of Fe2O3/C composites in terms of higher rate constants and chemisorption kinetics. The Pseudo-second-order kinetics model fitted in the adsorption test results of Fe2O3/C composites with the highest correlation co-efficiency. The Langmuir-isotherms model fitted in the adsorption test of the TS750 and MTS450 BCs. The Freundlich isotherms model is more fit with MTS600 and MTS750 BCs. Based on the isotherm results, the MTS750 BCs achieved 46.9 mg/g of maximum PAC adsorption capacity. The optimized MTS750 composites could be completely recovered by using an advanced electrochemical oxidation regeneration approach within 180 min. Also, with the adsorption and recovery process, the TOC removal rate improved to ∼79.4%. After the 6th cycle electrochemical oxidation process, the obtained results of the re-adsorption test showed the stabile adsorption activity of the sorbent material. The data outcomes herein propose that this type of combined adsorption and electrochemical approach will be useful in commercial water treatment plants.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Hierro/química , Acetaminofén , Adsorción , Contaminantes Químicos del Agua/análisis , Carbono , Cinética , Purificación del Agua/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA