Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 175
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Basic Res Cardiol ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38922408

RESUMEN

Combined [18F]FDG PET-cardiac MRI imaging (PET/CMR) is a useful tool to assess myocardial viability and cardiac function in patients with acute myocardial infarction (AMI). Here, we evaluated the prognostic value of PET/CMR in a porcine closed-chest reperfused AMI (rAMI) model. Late gadolinium enhancement by PET/CMR imaging displayed tracer uptake defect at the infarction site by 3 days after the rAMI in the majority of the animals (group Match, n = 28). Increased [18F]FDG uptake at the infarcted area (metabolism/contractility mismatch) with reduced tracer uptake in the remote viable myocardium (group Mismatch, n = 12) 3 days after rAMI was observed in the animals with larger infarct size and worse left ventricular ejection fraction (LVEF) (34 ± 8.7 vs 42.0 ± 5.2%), with lower LVEF also at the 1-month follow-up (35.8 ± 9.5 vs 43.0 ± 6.3%). Transcriptome analyses by bulk and single-nuclei RNA sequencing of the infarcted myocardium and border zones (n = 3 of each group, and 3 sham-operated controls) revealed a strong inflammatory response with infiltration of monocytes and macrophages in the infarcted and border areas in Mismatch animals. Our data indicate a high prognostic relevance of combined PET/MRI in the subacute phase of rAMI for subsequent impairment of heart function and underline the adverse effects of an excessive activation of the innate immune system in the initial phase after rAMI.

2.
Eur J Clin Invest ; : e14186, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38376079

RESUMEN

BACKGROUND: Cardiogenic shock (CS) is a severe myocardial dysfunction secondary to various cardiac conditions including ST-segment elevation acute myocardial infarction (STEMI) and associated with a high risk of death. Little is known on epigenetic determinants in CS. Here, we investigated plasma miRNAs in relation to CS stratification in STEMI-patients. METHODS: STEMI-patients (n = 49), with (CS, n = 25) and without CS (non-CS, n = 24) fulfilling inclusion criteria were included from HSCSP-cohort (Derivation-cohort). CS-miRNAs were analysed by Affymetrix-microarray and RT-PCR. Results were validated in a second cohort of CS-patients (CardShock: n = 35) with similar inclusion/exclusion criteria as the derivation cohort. In silico analysis were performed to identify potential miRNA target genes. RESULTS: Of the 5-miRNA signature obtained from microarray analysis, miR-619-5p showed higher levels in CS than in Non-CS patients (p = .003) and discriminating power for CS by ROC (AUC: .752, p = .003). miR-619-5p directly associated with risk scores [GRACE, p = .001; CardShock, p < .001]. Furthermore, miR-619-5p showed discrimination power for death in CS. Thus, miRNA levels were significantly higher in patients with mortality outcome both in the Derivation HSCSP-cohort (p = .02; AUC: .78 ± .095) and the Validation CardShock-cohort (p = .017; AUC: .737 ± .086) By in silico analysis, miR-619-5p target genes and TNF-alpha were involved in the regulation of inflammation. miR-619-5p and TNF-alpha levels discriminated mortality outcome in CS-patients during 30-day follow-up (Validation-Cohort: ROC: .812, p = .002; HR: 9.99, p = .003). CONCLUSIONS: Up-regulation of miR-619-5p is found in the plasma of STEMI-patients with CS and mortality outcome. These findings highlight the specificity of epigenetic regulation of inflammation on the disease severity of MI.

3.
Clin Chem Lab Med ; 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38747410

RESUMEN

The development of microRNA (miRNA)-based biomarkers has gained significant attention due to their potential diagnostic, prognostic and therapeutic applications. However, the reproducibility of miRNA biomarker research faces unique challenges, primarily due to the influence of pre-analytical and analytical factors. The absence of standardized procedures contributes to inconsistencies across studies, alongside challenges in reference gene selection, data analysis methods and miRNA profiling platforms. Inter-laboratory comparison trials, or ring trials, offer a strategic approach to address technical and biological variability in miRNA biomarker studies. These trials promote standardization, identify sources of variability and strengthen the correlation between miRNAs and clinical outcomes. Despite their underutilization in miRNA biomarker research, ring trials represent a valuable tool for enhancing reproducibility and expediting the translation of miRNA-based biomarkers into clinical applications.

4.
Crit Rev Clin Lab Sci ; 60(2): 141-152, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36325621

RESUMEN

Circulating cell-free microRNAs (miRNAs) represent a major reservoir for biomarker discovery. Unfortunately, their implementation in clinical practice is limited due to a profound lack of reproducibility. The great technical variability linked to major pre-analytical and analytical caveats makes the interpretation of circulating cell-free miRNA data challenging and leads to inconsistent findings. Additional efforts directed to standardization are fundamental. Several well-established protocols are currently used by independent groups worldwide. Nonetheless, there are some specific aspects in specimen collection and processing, sample handling, miRNA quantification, and data analysis that should be considered to ensure reproducibility of results. Here, we have addressed this challenge using an alternative approach. We have highlighted and discussed common pitfalls that negatively impact the robustness of circulating miRNA quantification and their application for clinical decision-making. Furthermore, we provide a checklist usable by investigators to facilitate and ensure the control of the whole miRNA quantification and analytical process. We expect that these recommendations improve the reproducibility of findings, and ultimately, facilitate the incorporation of circulating miRNA profiles into clinical practice as the next generation of disease biomarkers.


Asunto(s)
MicroARN Circulante , MicroARNs , Humanos , Reproducibilidad de los Resultados , Biomarcadores , MicroARNs/genética , Toma de Decisiones Clínicas
5.
Basic Res Cardiol ; 118(1): 16, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-37140699

RESUMEN

The number of "omics" approaches is continuously growing. Among others, epigenetics has appeared as an attractive area of investigation by the cardiovascular research community, notably considering its association with disease development. Complex diseases such as cardiovascular diseases have to be tackled using methods integrating different omics levels, so called "multi-omics" approaches. These approaches combine and co-analyze different levels of disease regulation. In this review, we present and discuss the role of epigenetic mechanisms in regulating gene expression and provide an integrated view of how these mechanisms are interlinked and regulate the development of cardiac disease, with a particular attention to heart failure. We focus on DNA, histone, and RNA modifications, and discuss the current methods and tools used for data integration and analysis. Enhancing the knowledge of these regulatory mechanisms may lead to novel therapeutic approaches and biomarkers for precision healthcare and improved clinical outcomes.


Asunto(s)
Enfermedades Cardiovasculares , Insuficiencia Cardíaca , Humanos , Metilación de ADN , Epigénesis Genética , Insuficiencia Cardíaca/genética , Enfermedades Cardiovasculares/genética , Corazón
6.
J Transl Med ; 21(1): 758, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37884975

RESUMEN

BACKGROUND: Even after 3 years from SARS-CoV-2 identification, COVID-19 is still a persistent and dangerous global infectious disease. Significant improvements in our understanding of the disease pathophysiology have now been achieved. Nonetheless, reliable and accurate biomarkers for the early stratification of COVID-19 severity are still lacking. Long noncoding RNAs (LncRNAs) are ncRNAs longer than 200 nucleotides, regulating the transcription and translation of protein-coding genes and they can be found in the peripheral blood, thus holding a promising biomarker potential. Specifically, peripheral blood mononuclear cells (PBMCs) have emerged as a source of indirect biomarkers mirroring the conditions of tissues: they include monocytes, B and T lymphocytes, and natural killer T cells (NKT), being highly informative for immune-related events. METHODS: We profiled by RNA-Sequencing a panel of 2906 lncRNAs to investigate their modulation in PBMCs of a pilot group of COVID-19 patients, followed by qPCR validation in 111 hospitalized COVID-19 patients. RESULTS: The levels of four lncRNAs were found to be decreased in association with COVID-19 mortality and disease severity: HLA Complex Group 18-242 and -244 (HCG18-242 and HCG18-244), Lymphoid Enhancer Binding Factor 1-antisense 1 (LEF1-AS1) and lncCEACAM21 (i.e. ENST00000601116.5, a lncRNA in the CEACAM21 locus). Interestingly, these deregulations were confirmed in an independent patient group of hospitalized patients and by the re-analysis of publicly available single-cell transcriptome datasets. The identified lncRNAs were expressed in all of the PBMC cell types and inversely correlated with the neutrophil/lymphocyte ratio (NLR), an inflammatory marker. In vitro, the expression of LEF1-AS1 and lncCEACAM21 was decreased upon THP-1 monocytes exposure to a relevant stimulus, hypoxia. CONCLUSION: The identified COVID-19-lncRNAs are proposed as potential innovative biomarkers of COVID-19 severity and mortality.


Asunto(s)
COVID-19 , ARN Largo no Codificante , Humanos , Leucocitos Mononucleares/metabolismo , ARN Largo no Codificante/metabolismo , SARS-CoV-2/genética , Biomarcadores/metabolismo , Gravedad del Paciente
7.
Cardiovasc Diabetol ; 22(1): 122, 2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-37226245

RESUMEN

Diabetes mellitus, a group of metabolic disorders characterized by high levels of blood glucose caused by insulin defect or impairment, is a major risk factor for cardiovascular diseases and related mortality. Patients with diabetes experience a state of chronic or intermittent hyperglycemia resulting in damage to the vasculature, leading to micro- and macro-vascular diseases. These conditions are associated with low-grade chronic inflammation and accelerated atherosclerosis. Several classes of leukocytes have been implicated in diabetic cardiovascular impairment. Although the molecular pathways through which diabetes elicits an inflammatory response have attracted significant attention, how they contribute to altering cardiovascular homeostasis is still incompletely understood. In this respect, non-coding RNAs (ncRNAs) are a still largely under-investigated class of transcripts that may play a fundamental role. This review article gathers the current knowledge on the function of ncRNAs in the crosstalk between immune and cardiovascular cells in the context of diabetic complications, highlighting the influence of biological sex in such mechanisms and exploring the potential role of ncRNAs as biomarkers and targets for treatments. The discussion closes by offering an overview of the ncRNAs involved in the increased cardiovascular risk suffered by patients with diabetes facing Sars-CoV-2 infection.


Asunto(s)
COVID-19 , Enfermedades Cardiovasculares , Sistema Cardiovascular , Diabetes Mellitus , Humanos , SARS-CoV-2 , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/genética , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/genética
8.
Int J Mol Sci ; 24(12)2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37373190

RESUMEN

Finding novel biomarkers for Parkinson's disease (PD) is crucial for early disease diagnosis, severity assessment and identifying novel disease-modifying drug targets. Our study aimed at investigating the GATA3 mRNA levels in whole blood samples of idiopathic PD (iPD) patients with different disease severities as a biomarker for iPD. The present study is a cross-sectional, case-control study, with samples obtained from the Luxembourg Parkinson's cohort (LuxPARK). iPD (N = 319) patients, along with age-matched controls without PD (non-PD; N = 319) were included in this study. Blood GATA3 mRNA expression was measured using quantitative reverse transcription PCR (RT-qPCR) assays. The capacity of GATA3 expression levels to establish the diagnosis of iPD (primary end-point) and assess disease severity (secondary end-point) was determined. The blood levels of GATA3 were significantly lower in iPD patients, compared to non-PD controls (p ≤ 0.001). Logistic regression models showed a significant association of GATA3 expression with iPD diagnosis after adjustment for the confounders (p = 0.005). Moreover, the addition of GATA3 expression to a baseline clinical model improved its iPD diagnosis capacity (p = 0.005). There was a significant association of GATA3 expression levels with the overall disease severity (p = 0.002), non-motor experiences of daily living (nm-EDL; p = 0.003) and sleep disturbances (p = 0.01). Our results suggest that GATA3 expression measured in blood may serve as a novel biomarker and may help in the diagnosis of iPD and assessment of disease severity.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/complicaciones , ARN , Estudios de Casos y Controles , Estudios Transversales , Biomarcadores , ARN Mensajero/genética , Factor de Transcripción GATA3/genética
9.
J Mol Cell Cardiol ; 160: 56-70, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33991529

RESUMEN

N6-methyladenosine (m6A) is the most abundant and well-studied internal modification of messenger RNAs among the various RNA modifications in eukaryotic cells. Moreover, it is increasingly recognized to regulate non-coding RNAs. The dynamic and reversible nature of m6A is ensured by the precise and coordinated activity of specific proteins able to insert ("write"), bind ("read") or remove ("erase") the m6A modification from coding and non-coding RNA molecules. Mounting evidence suggests a pivotal role for m6A in prenatal and postnatal development and cardiovascular pathophysiology. In the present review we summarise and discuss the major functions played by m6A RNA methylation and its components particularly referring to the cardiovascular system. We present the methods used to study m6A and the most abundantly methylated RNA molecules. Finally, we highlight the possible involvement of the m6A mark in cardiovascular disease as well as the need for further studies to better describe the mechanisms of action and the potential therapeutic role of this RNA modification.


Asunto(s)
Adenosina/análogos & derivados , Enfermedades Cardiovasculares/metabolismo , Sistema Cardiovascular/embriología , Sistema Cardiovascular/crecimiento & desarrollo , Transcriptoma/genética , Adenosina/genética , Adenosina/metabolismo , Animales , Biomarcadores/metabolismo , Sistema Cardiovascular/metabolismo , Homeostasis/genética , Humanos , Metilación , MicroARNs/metabolismo , Procesamiento Postranscripcional del ARN , ARN Largo no Codificante/metabolismo , ARN Mensajero/metabolismo
10.
Circulation ; 141(4): 313-328, 2020 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-31986093

RESUMEN

Cardiovascular disease is an enormous socioeconomic burden worldwide and remains a leading cause of mortality and disability despite significant efforts to improve treatments and personalize healthcare. Heart failure is the main manifestation of cardiovascular disease and has reached epidemic proportions. Heart failure follows a loss of cardiac homeostasis, which relies on a tight regulation of gene expression. This regulation is under the control of multiple types of RNA molecules, some encoding proteins (the so-called messenger RNAs) and others lacking protein-coding potential, named noncoding RNAs. In this review article, we aim to revisit the notion of regulatory RNA, which has been thus far mainly confined to noncoding RNA. Regulatory RNA, which we propose to abbreviate as regRNA, can include both protein-coding RNAs and noncoding RNAs, as long as they contribute, directly or indirectly, to the regulation of gene expression. We will address the regulation and functional role of messenger RNAs, microRNAs, long noncoding RNAs, and circular RNAs (ie, regRNAs) in heart failure. We will debate the utility of regRNAs to diagnose, prognosticate, and treat heart failure, and we will provide directions for future work.


Asunto(s)
Insuficiencia Cardíaca/metabolismo , ARN Mensajero/metabolismo , ARN no Traducido/metabolismo , Animales , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/terapia , Humanos , ARN Mensajero/genética , ARN no Traducido/genética
11.
Basic Res Cardiol ; 115(3): 23, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-32140778

RESUMEN

Mitochondrial function and integrity are vital for the maintenance of cellular homeostasis, particularly in high-energy demanding cells. Cardiomyocytes have a large number of mitochondria, which provide a continuous and bulk supply of the ATP necessary for cardiac mechanical function. More than 90% of the ATP consumed by the heart is derived from the mitochondrial oxidative metabolism. Decreased energy supply as the main consequence of mitochondrial dysfunction is closely linked to cardiovascular disease (CVD). The discovery of noncoding RNA (ncRNAs) in the mitochondrial compartment has changed the traditional view of molecular pathways involved in the regulatory network of CVD. Mitochondrial ncRNAs participate in controlling cardiovascular pathogenesis by regulating glycolysis, mitochondrial energy status, and the expression of genes involved in mitochondrial metabolism. Understanding the underlying mechanisms of the association between impaired mitochondrial function resulting from fluctuation in expression levels of ncRNAs and specific disease phenotype can aid in preventing and treating CVD. This review presents an overview of the role of mitochondrial ncRNAs in the complex regulatory network of the cardiovascular pathology. We will summarize and discuss (1) mitochondrial microRNAs (mitomiRs) and long noncoding RNAs (lncRNAs) encoded either by nuclear or mitochondrial genome which are involved in the regulation of mitochondrial metabolism; (2) the role of mitomiRs and lncRNAs in the pathogenesis of several CVD such as hypertension, cardiac hypertrophy, acute myocardial infarction and heart failure; (3) the biomarker and therapeutic potential of mitochondrial ncRNAs in CVD; (4) and the challenges inherent to their translation into clinical application.


Asunto(s)
Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/patología , Mitocondrias/genética , ARN Mitocondrial , ARN no Traducido , Animales , Humanos , Mitocondrias/metabolismo , ARN Mitocondrial/genética , ARN Mitocondrial/metabolismo , ARN no Traducido/genética , ARN no Traducido/metabolismo
12.
Crit Care ; 24(1): 185, 2020 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-32345356

RESUMEN

BACKGROUND: Arginine vasopressin has complex actions in critically ill patients, involving vasoregulatory status, plasma volume, and cortisol levels. Copeptin, a surrogate marker for arginine vasopressin, has shown promising prognostic features in small observational studies and is used clinically for early rule out of acute coronary syndrome. The objective of this study was to explore the association between early measurements of copeptin, circulatory status, and short-term survival after out-of-hospital cardiac arrest. METHODS: Serial blood samples were collected at 24, 48, and 72 h as part of the target temperature management at 33 °C versus 36 °C after cardiac arrest trial, an international multicenter randomized trial where unconscious survivors after out-of-hospital cardiac arrest were allocated to an intervention of 33 or 36 °C for 24 h. Primary outcome was 30-day survival with secondary endpoints circulatory cause of death and cardiovascular deterioration composite; in addition, we examined the correlation with extended the cardiovascular sequential organ failure assessment (eCvSOFA) score. RESULTS: Six hundred ninety patients were included in the analyses, of whom 203 (30.3%) developed cardiovascular deterioration within 24 h, and 273 (39.6%) died within 30 days. Copeptin measured at 24 h was found to be independently associated with 30-day survival, hazard ratio 1.17 [1.06-1.28], p = 0.001; circulatory cause of death, odds ratio 1.03 [1.01-1.04], p = 0.001; and cardiovascular deterioration composite, odds ratio of 1.05 [1.02-1.08], p < 0.001. Copeptin at 24 h was correlated with eCvSOFA score with rho 0.19 [0.12-0.27], p < 0.001. CONCLUSION: Copeptin is an independent marker of severity of the post cardiac arrest syndrome, partially related to circulatory failure. TRIAL REGISTRATION: Clinical Trials, NCT01020916. Registered November 26, 2009.


Asunto(s)
Glicopéptidos/análisis , Paro Cardíaco Extrahospitalario/sangre , Anciano , Biomarcadores/análisis , Biomarcadores/sangre , Femenino , Glicopéptidos/sangre , Mortalidad Hospitalaria , Humanos , Masculino , Persona de Mediana Edad , Oportunidad Relativa , Puntuaciones en la Disfunción de Órganos , Paro Cardíaco Extrahospitalario/mortalidad , Paro Cardíaco Extrahospitalario/fisiopatología , Modelos de Riesgos Proporcionales , Estadísticas no Paramétricas
15.
Int J Mol Sci ; 21(10)2020 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-32466222

RESUMEN

In the era of single-cell analysis, one always has to keep in mind the systemic nature of various diseases and how these diseases could be optimally studied. Comorbidities of the heart in neurological diseases as well as of the brain in cardiovascular diseases are prevalent, but how interactions in the brain-heart axis affect disease development and progression has been poorly addressed. Several brain and heart diseases share common risk factors. A better understanding of the brain-heart interactions will provide better insights for future treatment and personalization of healthcare, for heart failure patients' benefit notably. We review here emerging evidence that studying noncoding RNAs in the brain-heart axis could be pivotal in understanding these interactions. We also introduce the Special Issue of the International Journal of Molecular Sciences RNAs in Brain and Heart Diseases-EU-CardioRNA COST Action.


Asunto(s)
Encefalopatías/metabolismo , Ácidos Nucleicos Libres de Células/metabolismo , Cardiopatías/metabolismo , ARN no Traducido/metabolismo , Animales , Biomarcadores/sangre , Encefalopatías/sangre , Ácidos Nucleicos Libres de Células/sangre , Cardiopatías/sangre , Humanos , ARN no Traducido/sangre , Transducción de Señal
16.
Int J Mol Sci ; 21(3)2020 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-31973111

RESUMEN

The interest in non-coding RNAs, which started more than a decade ago, has still not weakened. A wealth of experimental and clinical studies has suggested the potential of non-coding RNAs, especially the short-sized microRNAs (miRs), to be used as the new generation of therapeutic targets and biomarkers of cardiovascular disease, an ever-growing public health issue in the modern world. Among the hundreds of miRs characterized so far, microRNA-1 (miR-1) and microRNA-21 (miR-21) have received some attention and have been associated with cardiac injury and cardioprotection. In this review article, we summarize the current knowledge of the function of these two miRs in the heart, their association with cardiac injury, and their potential cardioprotective roles and biomarker value. While this field has already been extensively studied, much remains to be done before research findings can be translated into clinical application for patient's benefit.


Asunto(s)
Cardiotónicos/uso terapéutico , Cardiopatías/tratamiento farmacológico , MicroARNs/uso terapéutico , Animales , Antineoplásicos/toxicidad , Arritmias Cardíacas/tratamiento farmacológico , Biomarcadores , Cardiomiopatías/tratamiento farmacológico , Cardiotoxinas , Enfermedades Cardiovasculares/tratamiento farmacológico , Corazón , Cardiopatías/inducido químicamente , Lesiones Cardíacas/inducido químicamente , Lesiones Cardíacas/tratamiento farmacológico , Humanos , Radioterapia/efectos adversos
17.
Int J Mol Sci ; 21(18)2020 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-32899928

RESUMEN

Parkinson's disease (PD) is a complex and heterogeneous disorder involving multiple genetic and environmental influences. Although a wide range of PD risk factors and clinical markers for the symptomatic motor stage of the disease have been identified, there are still no reliable biomarkers available for the early pre-motor phase of PD and for predicting disease progression. High-throughput RNA-based biomarker profiling and modeling may provide a means to exploit the joint information content from a multitude of markers to derive diagnostic and prognostic signatures. In the field of PD biomarker research, currently, no clinically validated RNA-based biomarker models are available, but previous studies reported several significantly disease-associated changes in RNA abundances and activities in multiple human tissues and body fluids. Here, we review the current knowledge of the regulation and function of non-coding RNAs in PD, focusing on microRNAs, long non-coding RNAs, and circular RNAs. Since there is growing evidence for functional interactions between the heart and the brain, we discuss the benefits of studying the role of non-coding RNAs in organ interactions when deciphering the complex regulatory networks involved in PD progression. We finally review important concepts of harmonization and curation of high throughput datasets, and we discuss the potential of systems biomedicine to derive and evaluate RNA biomarker signatures from high-throughput expression data.


Asunto(s)
Encéfalo/fisiología , Corazón/fisiología , Enfermedad de Parkinson/genética , ARN no Traducido/fisiología , Animales , Encéfalo/metabolismo , Comunicación Celular/genética , Humanos , MicroARNs/fisiología , Miocardio/metabolismo , Enfermedad de Parkinson/metabolismo , ARN Circular/fisiología , ARN Largo no Codificante/fisiología , Transducción de Señal/genética
18.
Int J Mol Sci ; 21(24)2020 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-33339419

RESUMEN

There is an intensive effort to identify biomarkers to predict cardiovascular disease evolution. We aimed to determine the potential of microRNAs to predict the appearance of cardiovascular events (CVEs) in patients with peripheral artery disease (PAD) following femoral artery bypass surgery. Forty-seven PAD patients were enrolled and divided into two groups, without CVEs (n = 35) and with CVEs (n = 12), during 1 year follow-up. Intra-surgery atherosclerotic plaques from femoral arteries were collected and the levels of miR-142, miR-223, miR-155, and miR-92a of the primary transcripts of these microRNAs (pri-miRNAs), and gene expression of Drosha and Dicer were determined. Results showed that, in the plaques, miR-142, miR-223, and miR-155 expression levels were significantly increased in PAD patients with CVEs compared to those without CVEs. Positive correlations between these miRNAs and their pri-miRNAs levels and the Dicer/Drosha expression were observed. In the plasma of PAD patients with CVEs compared to those without CVEs, miR-223 and miR-142 were significantly increased. The multiple linear regression analyses revealed significant associations among several plasma lipids, oxidative and inflammatory parameters, and plasma miRNAs levels. Receiver operator characteristic (ROC) analysis disclosed that plasma miR-142 levels could be an independent predictor for CVEs in PAD patients. Functional bioinformatics analyses supported the role of these miRNAs in the regulation of biological processes associated with atherosclerosis. Taken together, these data suggest that plasma levels of miR-142, miR-223, miR-155, and miR-92a can significantly predict CVEs among PAD patients with good accuracy, and that plasma levels of miR-142 can be an independent biomarker to predict post-surgery CVEs development in PAD patients.


Asunto(s)
MicroARNs/sangre , Enfermedad Arterial Periférica/sangre , Placa Aterosclerótica/sangre , Complicaciones Posoperatorias/sangre , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores/sangre , Biomarcadores/metabolismo , Femenino , Arteria Femoral/cirugía , Humanos , Masculino , MicroARNs/metabolismo , Persona de Mediana Edad , Enfermedad Arterial Periférica/metabolismo , Enfermedad Arterial Periférica/cirugía , Placa Aterosclerótica/metabolismo , Complicaciones Posoperatorias/metabolismo , Injerto Vascular/efectos adversos
19.
Int J Mol Sci ; 21(14)2020 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-32664454

RESUMEN

Cardiovascular disease (CVD) is the biggest cause of sickness and mortality worldwide in both males and females. Clinical statistics demonstrate clear sex differences in risk, prevalence, mortality rates, and response to treatment for different entities of CVD. The reason for this remains poorly understood. Non-coding RNAs (ncRNAs) are emerging as key mediators and biomarkers of CVD. Similarly, current knowledge on differential regulation, expression, and pathology-associated function of ncRNAs between sexes is minimal. Here, we provide a state-of-the-art overview of what is known on sex differences in ncRNA research in CVD as well as discussing the contributing biological factors to this sex dimorphism including genetic and epigenetic factors and sex hormone regulation of transcription. We then focus on the experimental models of CVD and their use in translational ncRNA research in the cardiovascular field. In particular, we want to highlight the importance of considering sex of the cellular and pre-clinical models in clinical studies in ncRNA research and to carefully consider the appropriate experimental models most applicable to human patient populations. Moreover, we aim to identify sex-specific targets for treatment and diagnosis for the biggest socioeconomic health problem globally.


Asunto(s)
Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/metabolismo , Sistema Cardiovascular/metabolismo , ARN no Traducido/genética , Animales , Biomarcadores/metabolismo , Humanos , Caracteres Sexuales
20.
Int J Mol Sci ; 21(21)2020 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-33114482

RESUMEN

Cardiogenic shock (CS) is a life-threatening emergency. New biomarkers are needed in order to detect patients at greater risk of adverse outcome. Our aim was to assess the characteristics of miR-21-5p, miR-122-5p, and miR-320a-3p in CS and evaluate the value of their expression levels in risk prediction. Circulating levels of miR-21-5p, miR-122-5p, and miR-320a-3p were measured from serial plasma samples of 179 patients during the first 5-10 days after detection of CS, derived from the CardShock study. Acute coronary syndrome was the most common cause (80%) of CS. Baseline (0 h) levels of miR-21-5p, miR-122-5p, and miR-320a-3p were all significantly elevated in nonsurvivors compared to survivors (p < 0.05 for all). Above median levels at 0h of each miRNA were each significantly associated with higher lactate and alanine aminotransferase levels and decreased glomerular filtration rates. After adjusting the multivariate regression analysis with established CS risk factors, miR-21-5p and miR-320a-3p levels above median at 0 h were independently associated with 90-day all-cause mortality (adjusted hazard ratio 1.8 (95% confidence interval 1.1-3.0), p = 0.018; adjusted hazard ratio 1.9 (95% confidence interval 1.2-3.2), p = 0.009, respectively). In conclusion, circulating plasma levels of miR-21-5p, miR-122-5p, and miR-320a-3p at baseline were all elevated in nonsurvivors of CS and associated with markers of hypoperfusion. Above median levels of miR-21-5p and miR-320a-3p at baseline appear to independently predict 90-day all-cause mortality. This indicates the potential of miRNAs as biomarkers for risk assessment in cardiogenic shock.


Asunto(s)
Síndrome Coronario Agudo/epidemiología , MicroARNs/sangre , Choque Cardiogénico/mortalidad , Síndrome Coronario Agudo/complicaciones , Síndrome Coronario Agudo/genética , Síndrome Coronario Agudo/mortalidad , Anciano , Biomarcadores/sangre , Femenino , Estudios de Asociación Genética , Humanos , Masculino , Persona de Mediana Edad , Análisis Multivariante , Choque Cardiogénico/genética , Análisis de Supervivencia , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA