RESUMEN
BACKGROUND: The search for factors beyond the radiotherapy dose that could identify patients more at risk of developing radio-induced toxicity is essential to establish personalised treatment protocols for improving the quality-of-life of survivors. To investigate the role of the intestinal microbiota in the development of radiotherapy-induced gastrointestinal toxicity, the MicroLearner observational cohort study characterised the intestinal microbiota of 136 (discovery) and 79 (validation) consecutive prostate cancer patients at baseline radiotherapy. METHODS: Gastrointestinal toxicity was assessed weekly during RT using CTCAE. An average grade >1.3 over time points was used to identify patients suffering from persistent acute toxicity (endpoint). The microbiota of patients was quantified from the baseline faecal samples using 16S rRNA gene sequencing technology and the Ion Reporter metagenomic pipeline. Statistical techniques and computational and machine learning tools were used to extract, functionally characterise, and predict core features of the bacterial communities of patients who developed acute gastrointestinal toxicity. FINDINGS: Analysis of the core bacterial composition in the discovery cohort revealed a cluster of patients significantly enriched for toxicity, displaying a toxicity rate of 60%. Based on selected high-risk microbiota compositional features, we developed a clinical decision tree that could effectively predict the risk of toxicity based on the relative abundance of genera Faecalibacterium, Bacteroides, Parabacteroides, Alistipes, Prevotella and Phascolarctobacterium both in internal and external validation cohorts. INTERPRETATION: We provide evidence showing that intestinal bacteria profiling from baseline faecal samples can be effectively used in the clinic to improve the pre-radiotherapy assessment of gastrointestinal toxicity risk in prostate cancer patients. FUNDING: Italian Ministry of Health (Promotion of Institutional Research INT-year 2016, 5 × 1000, Ricerca Corrente funds). Fondazione Regionale per la Ricerca Biomedica (ID 2721017). AIRC (IG 21479).
Asunto(s)
Microbioma Gastrointestinal , Neoplasias de la Próstata , Traumatismos por Radiación , Humanos , Masculino , Microbioma Gastrointestinal/efectos de la radiación , Neoplasias de la Próstata/radioterapia , Anciano , Traumatismos por Radiación/etiología , Traumatismos por Radiación/microbiología , Traumatismos por Radiación/diagnóstico , Persona de Mediana Edad , Metagenómica/métodos , Heces/microbiología , ARN Ribosómico 16S/genética , Radioterapia/efectos adversos , Bacterias/clasificación , Bacterias/genética , Bacterias/efectos de la radiación , Enfermedades Gastrointestinales/etiología , Enfermedades Gastrointestinales/microbiología , MetagenomaRESUMEN
Durable remissions are observed in 10%-20% of treated patients with advanced metastatic melanoma but the factors associated with long-term complete clinical responses are largely unknown. Here, we report the molecular characteristics of tumor evolution during disease progression along a 9-year clinical course in a patient with advanced disseminated melanoma who received different treatments, including trametinib, ipilimumab, radiation, vemurafenib, surgical tumor debulking and a second ipilimumab course, ultimately achieving complete long-term disease remission.Longitudinal analyses of therapies-resistant metastatic tumors revealed the effects of different treatments on tumor's microenvironment and immunogenicity, ultimately creating a milieu favorable to immunotherapy response. Monitoring of the temporal dynamics of T cells by analysis of the T cell receptor (TCR) repertoire in the tumor and peripheral blood during disease evolution indicated that T-cell clones with common TCR rearrangements, present at low levels at baseline, were maintained and expanded after immunotherapy, and that TCR diversity increased. Analysis of genetic, molecular, and cellular components of the tumor depicted a multistep process in which treatment with kinase inhibitors strongly conditioned the immune microenvironment creating an inflamed milieu converting cold into hot tumors, while ipilimumab impacted and increased the TCR repertoire, a requirement for tumor rejection.Since the optimal sequencing of treatment with antibodies targeting immune checkpoints and kinase inhibitors for advanced melanoma is still clinically debated, this case indicates that immunotherapy success is possible even after progression on targeted therapy.
Asunto(s)
Melanoma , Humanos , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/patología , Ipilimumab/uso terapéutico , Vemurafenib , Linfocitos T/patología , Receptores de Antígenos de Linfocitos T/uso terapéutico , Microambiente TumoralRESUMEN
Breast cancer (BC) is the most common cancer worldwide. Chemotherapy (CT) is essential for the treatment of BC, but is often accompanied by several side effects, including taste alterations, due to different mechanisms. Although dysgeusia is usually underestimated by clinicians, it is considered very worrying and disturbing by cancer patients undergoing CT, because it induces changes in dietary choices and social habits, affecting their physical and psychological health, with a profound impact on their quality of life. Several strategies and therapies have been proposed to prevent or alleviate CT-induced dysgeusia. This review aimed to evaluate the available evidence on prevalence, pathophysiological mechanisms, clinical consequences, and strategies for managing dysgeusia in BC patients receiving CT. We queried the National Library of Medicine, the Cochrane Library, Excerpta Medica dataBASE, and the Cumulative Index to Nursing and Allied Health Literature database, performing a search strategy using database-specific keywords. We found that the literature on this topic is scarce, methodologically limited, and highly heterogeneous in terms of study design and criteria for patient inclusion, making it difficult to obtain definitive results and make recommendations for clinical practice.
Asunto(s)
Neoplasias de la Mama , Disgeusia , Humanos , Femenino , Disgeusia/inducido químicamente , Disgeusia/epidemiología , Neoplasias de la Mama/complicaciones , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/psicología , Calidad de Vida , DietaRESUMEN
Background: Papillary thyroid carcinoma (PTC) is the most common type of thyroid cancer (TC). Several genomic and transcriptomic studies explored the molecular landscape of follicular cell-derived TCs, and BRAFV600E, RAS mutations, and gene fusions are well-established drivers. DICER1 mutations were described in specific sets of TC patients but represent a rare event in adult TC patients. Methods: Here, we report the molecular characterization of 30 retrospective follicular cell-derived thyroid tumors, comprising PTCs (90%) and poorly differentiated TCs (10%), collected at our Institute. We performed DNA whole-exome sequencing using patient-matched control for somatic mutation calling, and targeted RNA-seq for gene fusion detection. Transcriptional profiles established in the same cohort by microarray were investigated using three signaling-related gene signatures derived from The Cancer Genome Atlas (TCGA). Results: The occurrence of BRAFV600E (44%), RAS mutations (13%), and gene fusions (13%) was confirmed in our cohort. In addition, in two patients lacking known drivers, mutations of the DICER1 gene (p.D1709N and p.D1810V) were identified. DICER1 mutations occur in two adult patients with follicular-pattern lesions, and in one of them a second concurrent DICER1 mutation (p.R459*) is also observed. Additional putative drivers include ROS1 gene (p.P2130A mutation), identified in a patient with a rare solid-trabecular subtype of PTC. Transcriptomics indicates that DICER1 tumors are RAS-like, whereas the ROS1-mutated tumor displays a borderline RAS-/BRAF-like subtype. We also provide an overview of DICER1 and ROS1 mutations in thyroid lesions by investigating the COSMIC database. Conclusion: Even though small, our series recapitulates the genetic background of PTC. Furthermore, we identified DICER1 mutations, one of which is previously unreported in thyroid lesions. For these less common alterations and for patients with unknown drivers, we provide signaling information applying TCGA-derived classification.
Asunto(s)
Neoplasias de la Tiroides , Transcriptoma , Humanos , Adulto , Estudios Retrospectivos , Proteínas Tirosina Quinasas , Proteínas Proto-Oncogénicas/genética , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/patología , Cáncer Papilar Tiroideo/genética , Cáncer Papilar Tiroideo/patología , Mutación , Genómica , Ribonucleasa III/genética , ARN Helicasas DEAD-box/genéticaRESUMEN
The current study reports an ethnobotanical field investigation of traditionally gathered and consumed wild greens (Chorta) in one of the five so-called Blue Zones in the world: Ikaria Isle, Greece. Through 31 semi-structured interviews, a total of 56 wild green plants were documented along with their culinary uses, linguistic labels, and locally perceived tastes. Most of the gathered greens were described as bitter and associated with members of Asteraceae and Brassicaceae botanical families (31%), while among the top-quoted wild greens, species belonging to these two plant families accounted for 50% of the wild vegetables, which were consumed mostly cooked. Cross-cultural comparison with foraging in other areas of the central-eastern Mediterranean and the Near East demonstrated a remarkable overlapping of Ikarian greens with Cretan and Sicilian, as well as in the prevalence of bitter-tasting botanical genera. Important differences with other wild greens-related food heritage were found, most notably with the Armenian and Kurdish ones, which do not commonly feature many bitter greens. The proven role of extra-oral bitter taste receptors in the modulation of gastric emptying, glucose absorption and crosstalk with microbiota opens new ways of looking at these differences, in particular with regard to possible health implications. The present study is also an important attempt to preserve and document the bio-cultural gastronomic heritage of Chorta as a quintessential part of the Mediterranean diet. The study recommends that nutritionists, food scientists, and historians, as well as policymakers and practitioners, pay the required attention to traditional rural dietary systems as models of sustainable health.
Asunto(s)
Dieta Mediterránea , Gusto , Plantas Comestibles , Grecia , VerdurasRESUMEN
PURPOSE: The investigation of multiple molecular targets with next-generation sequencing (NGS) has entered clinical practice in oncology, yielding to a paradigm shift from the histology-centric approach to the mutational model for personalized treatment. Accordingly, most of the drugs recently approved in oncology are coupled to specific biomarkers. One potential tool for implementing the mutational model of precision oncology in daily practice is represented by the Molecular Tumor Board (MTB), a multidisciplinary team whereby molecular pathologists, biologists, bioinformaticians, geneticists, medical oncologists, and pharmacists cooperate to generate, interpret, and match molecular data with personalized treatments. PATIENTS AND METHODS: Since May 2020, the institutional MTB set at Fondazione IRCCS Istituto Nazionale Tumori of Milan met weekly via teleconference to discuss molecular data and potential therapeutic options for patients with advanced/metastatic solid tumors. RESULTS: Up to October 2021, among 1,996 patients evaluated, we identified >10,000 variants, 43.2% of which were functionally relevant (pathogenic or likely pathogenic). On the basis of functionally relevant variants, 711 patients (35.6%) were potentially eligible to targeted therapy according to European Society of Medical Oncology Scale for Clinical Actionability of Molecular Targets tiers, and 9.4% received a personalized treatment. Overall, larger NGS panels (containing >50 genes) significantly outperformed small panels (up to 50 genes) in detecting actionable gene targets across different tumor types. CONCLUSION: Our real-world data provide evidence that MTB is a valuable tool for matching NGS data with targeted treatments, eventually implementing precision oncology in clinical practice.
Asunto(s)
Neoplasias , Humanos , Medicina de Precisión , Atención al Paciente , Oncología Médica , Secuenciación de Nucleótidos de Alto RendimientoRESUMEN
Aim: Diagnostic laboratories are progressively introducing next-generation sequencing (NGS) technologies in the routine workflow to meet the increasing clinical need for comprehensive molecular characterization in cancer patients for diagnosis and precision medicine, including fusion-transcripts detection. Nevertheless, the low quality of messenger RNA (mRNA) extracted from formalin-fixed paraffin-embedded (FFPE) samples may affect the transition from traditional single-gene testing approaches [like fluorescence in situ hybridization (FISH), immunohistochemistry (IHC), or polymerase chain reaction (PCR)] to NGS. The present study is aimed at assessing the overall accuracy of RNA fusion transcripts detection by NGS analysis in FFPE samples in real-world diagnostics. Methods: Herein, NGS data from 190 soft tissue tumors (STTs) and carcinoma cases, discussed in the context of the institutional Molecular Tumor Board, are reported and analyzed by FusionPlex© Solid tumor kit through the manufacturer's pipeline and by two well-known fast and accurate open-source tools [Arriba (ARR) and spliced transcripts alignment to reference (STAR)-fusion (SFU)]. Results: The combination of FusionPlex© Solid tumor with ArcherDX® Analysis suite (ADx) analysis package has been proven to be sensitive and specific in STT samples, while partial loss of sensitivity has been found in carcinoma specimens. Conclusions: Albeit ARR and SFU showed lower sensitivity, the use of additional fusion-detection tools can contribute to reinforcing or extending the output obtained by ADx, particularly in the case of low-quality input data. Overall, our results sustain the clinical use of NGS for the detection of fusion transcripts in FFPE material.
RESUMEN
The genetic landscape of melanoma resistance to targeted therapy with small molecules inhibiting BRAF and MEK kinases is still largely undefined. In this study, we portrayed in detail the somatic alterations of resistant melanoma and explored the associated biological processes and their integration with transcriptional profiles. By targeted next-generation sequencing and whole-exome sequencing analyses, a list of 101 genes showing imbalance in metastatic tumors from patients with a complete/durable response or disease progression during therapy with vemurafenib or with dabrafenib and trametinib was defined. Classification of altered genes in functional categories indicated that the mutational pattern of both resistant tumors and melanoma cell lines was enriched in gene families involved in oncogenic signaling pathways and in DNA repair. Integration of genomic and transcriptomic features showed that the enrichment of mutations in gene sets associated with anabolic processes, chromatin alterations, and IFN-α response determined a significant positive modulation of the same gene signatures at the transcriptional level. In particular, MTORC1 signaling was enriched in tumors from poorly responsive patients and in resistant tumors excised from treated patients. Results indicate that genetic patterns are associated with melanoma resistance to targeted therapy and disclose the underlying key molecular pathways to define drug combinations for improved personalized therapies.
Asunto(s)
Melanoma , Proteínas Proto-Oncogénicas B-raf , Humanos , Vemurafenib/uso terapéutico , Proteínas Proto-Oncogénicas B-raf/genética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/patología , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/uso terapéutico , Mutación , Cromatina , Diana Mecanicista del Complejo 1 de la Rapamicina , Quinasas de Proteína Quinasa Activadas por Mitógenos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéuticoRESUMEN
The MITF-E318K variant has been implicated in genetic predisposition to cutaneous melanoma. We addressed the occurrence of MITF-E318K and its association with germline status of CDKN2A and MC1R genes in a hospital-based series of 248 melanoma patients including cohorts of multiple, familial, pediatric, sporadic and melanoma associated with other tumors. Seven MITF-E318K carriers were identified, spanning every group except the pediatric patients. Three carriers showed mutated CDKN2A, five displayed MC1R variants, while the sporadic carrier revealed no variants. Germline/tumor whole exome sequencing for this carrier revealed germline variants of unknown significance in ATM and FANCI genes and, in four BRAF-V600E metastases, somatic loss of the MITF wild-type allele, amplification of MITF-E318K and deletion of a 9p21.3 chromosomal region including CDKN2A and MTAP. In silico analysis of tumors from MITF-E318K melanoma carriers in the TCGA Pan-Cancer-Atlas dataset confirmed the association with BRAF mutation and 9p21.3 deletion revealing a common genetic pattern. MTAP was the gene deleted at homozygous level in the highest number of patients. These results support the utility of both germline and tumor genome analysis to define tumor groups providing enhanced information for clinical strategies and highlight the importance of melanoma prevention programs for MITF-E318K patients.
Asunto(s)
Mutación de Línea Germinal , Melanoma/genética , Factor de Transcripción Asociado a Microftalmía/genética , Neoplasias Cutáneas/genética , Adulto , Anciano , Anciano de 80 o más Años , Cromosomas Humanos Par 9 , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Femenino , Heterocigoto , Humanos , Masculino , Persona de Mediana Edad , Proteínas Proto-Oncogénicas B-raf/genética , Receptor de Melanocortina Tipo 1/genética , Secuenciación del Exoma , Adulto Joven , Melanoma Cutáneo MalignoRESUMEN
In multiple myeloma, novel treatments with proteasome inhibitors (PIs) and immunomodulatory agents (IMiDs) have prolonged survival but the disease remains incurable. At relapse, next-generation sequencing has shown occasional mutations of drug targets but has failed to identify unifying features that underlie chemotherapy resistance. We studied 42 patients refractory to both PIs and IMiDs. Whole-exome sequencing was performed in 40 patients, and RNA sequencing (RNA-seq) was performed in 27. We found more mutations than were reported at diagnosis and more subclonal mutations, which implies ongoing evolution of the genome of myeloma cells during treatment. The mutational landscape was different from that described in published studies on samples taken at diagnosis. The TP53 pathway was the most frequently inactivated (in 45% of patients). Conversely, point mutations of genes associated with resistance to IMiDs were rare and were always subclonal. Refractory patients were uniquely characterized by having a mutational signature linked to exposure to alkylating agents, whose role in chemotherapy resistance and disease progression remains to be elucidated. RNA-seq analysis showed that treatment or mutations had no influence on clustering, which was instead influenced by karyotypic events. We describe a cluster with both amp(1q) and del(13) characterized by CCND2 upregulation and also overexpression of MCL1, which represents a novel target for experimental treatments. Overall, high-risk features were found in 65% of patients. However, only amp(1q) predicted survival. Gene mutations of IMiD and PI targets are not a preferred mode of drug resistance in myeloma. Chemotherapy resistance of the bulk tumor population is likely attained through differential, yet converging evolution of subclones that are overall variable from patient to patient and within the same patient.
Asunto(s)
Mieloma Múltiple , Genómica , Humanos , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Recurrencia Local de Neoplasia , Inhibidores de Proteasoma , TranscriptomaRESUMEN
Helicobacter pylori (HP) is a gram-negative flagellated pathogen acid-resistant bacterium; it belongs to the order Campylobacterales that is wide spread all over the world, infecting more than 50% of the world population. HP infection is etiologically associated with non-atrophic and atrophic gastritis, peptic ulcer and with 3 to 6-fold increased relative risk for developing gastric adenocarcinoma and mucosa-associated lymphoid tissue (MA LT) lymphoma. For this reason HP is recognized by the World Health Organization as a Class I human carcinogen. In the last years a lot of studies clarified the role of this pathogen in nutrition and metabolism; particularly, it has been shown that it is able to induce malabsorption of several nutrients like iron, cobalamin, vitamin C and vitamin E, with strong consequences on nutritional status. Interesting, this bacterium is able to produce different biological effects on hormones like ghrelin and leptin controlling both appetite and growth, mostly depending on the time of acquisition of the infection and of its treatment. In this review, the authors focused their attention on nutritional effects of HP infection and particularly on the role that diet, food, plants and specific nutrients can play in its treatment, considering that HP eradication rates, with standard triple-therapy, have fallen to a low level in the last years.
Asunto(s)
Infecciones por Helicobacter/fisiopatología , Infecciones por Helicobacter/terapia , Helicobacter pylori , Estado Nutricional , Infecciones por Helicobacter/complicaciones , HumanosRESUMEN
High grade serous ovarian cancer (HGSOC) retains high molecular heterogeneity and genomic instability, which currently limit the treatment opportunities. HGSOC patients receiving complete cytoreduction (R0) at primary surgery and platinum-based therapy may unevenly experience early disease relapse, in spite of their clinically favorable prognosis. To identify distinctive traits of the genomic landscape guiding tumor progression, we focused on the R0 patients of The Cancer Genome Atlas (TCGA) ovarian serous cystadenocarcinoma (TCGA-OV) dataset and classified them according to their time to relapse (TTR) from surgery. We included in the study two groups of R0-TCGA patients experiencing substantially different outcome: Resistant (R; TTR ≤ 12 months; n = 11) and frankly Sensitive (fS; TTR ≥ 24 months; n = 16). We performed an integrated clinical, RNA-Sequencing, exome and somatic copy number alteration (sCNA) data analysis. No significant differences in mutational landscape were detected, although the lack of BRCA-related mutational signature characterized the R group. Focal sCNA analysis showed a higher frequency of amplification in R group and deletions in fS group respectively, involving cytobands not commonly detected by recurrent sCNA analysis. Functional analysis of focal sCNA with a concordantly altered gene expression identified in R group a gain in Notch, and interferon signaling and fatty acid metabolism. We are aware of the constraints related to the low number of OC cases analyzed. It is worth noting, however, that the sCNA identified in this exploratory analysis and characterizing Pt-resistance are novel, deserving validation in a wider cohort of patients achieving complete surgical debulking.
Asunto(s)
Biomarcadores de Tumor/genética , Cistadenocarcinoma Seroso/genética , Variaciones en el Número de Copia de ADN , Neoplasias Ováricas/genética , Antineoplásicos/uso terapéutico , Cistadenocarcinoma Seroso/tratamiento farmacológico , Cistadenocarcinoma Seroso/patología , Resistencia a Antineoplásicos , Femenino , Humanos , Acumulación de Mutaciones , Compuestos Organoplatinos/uso terapéutico , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Receptores Notch/genética , RecurrenciaRESUMEN
Intramedullary nailing is one of the most commonly used surgical treatments for humeral diaphyseal fractures. Once an intramedullary fixation technique has been selected, the choice between antegrade or retrograde approach remains controversial. Forty patients with humeral diaphyseal fracture treated with Seidel antegrade intramedullary nailing through an "danterior deltoid incision" (ADI) were evaluated after an average period of 62 months. Clinical and functional evaluation of the shoulder was performed using the Constant Score. Results were excellent in 33 patients, good in 5 and acceptable in 2. Radiological assessment was performed using antero-posterior (AP) and latero-lateral (LL) radiographs of the humerus and AP and Neer radiographs of the shoulder. Radiographic findings demonstrated good consolidation of all fractures; nail and locking proximal screw malpositioning were detected in 2 cases (2 patients with acceptable results). The positive results obtained for shoulder function correlate with patient age and demonstrate that antegrade intramedullary nailing is a valid option for the treatment of humeral diaphyseal fractures, as long as it is performed through ADI access and with the appropriate surgical technique. Surgical technical errors will lead to functional problems of the shoulder, which in some cases will not be completely eliminated even after nail removal.
Asunto(s)
Fijación Intramedular de Fracturas/métodos , Fracturas del Húmero/cirugía , Articulación del Hombro/fisiología , Adolescente , Adulto , Diáfisis/lesiones , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Recuperación de la Función , Factores de Tiempo , Adulto JovenRESUMEN
BACKGROUND: Desmoplastic small round cell tumor (DSRCT) is a rare, aggressive, and poorly investigated simple sarcoma with a low frequency of genetic deregulation other than an Ewing sarcoma RNA binding protein 1 (EWSR1)-Wilm's tumor suppressor (WT1) translocation. We used whole-exome sequencing to interrogate six consecutive pre-treated DSRCTs whose gene expression was previously investigated. METHODS: DNA libraries were prepared from formalin-fixed, paraffin-embedded archival tissue specimens following the Agilent SureSelectXT2 target enrichment protocol and sequenced on Illumina NextSeq 500. Raw sequence data were aligned to the reference genome with Burrows-Wheeler Aligner algorithm. Somatic mutations and copy number alterations (CNAs) were identified using MuTect2 and EXCAVATOR2, respectively. Biological functions associated with altered genes were investigated through Ingenuity Pathway Analysis (IPA) software. RESULTS: A total of 137 unique somatic mutations were identified: 133 mutated genes were case-specific, and 2 were mutated in two cases but in different positions. Among the 135 mutated genes, 27% were related to two biological categories: DNA damage-response (DDR) network that was also identified through IPA and mesenchymal-epithelial reverse transition (MErT)/epithelial-mesenchymal transition (EMT) already demonstrated to be relevant in DSRCT. The mutated genes in the DDR network were involved in various steps of transcription and particularly affected pre-mRNA. Half of these genes encoded RNA-binding proteins or DNA/RNA-binding proteins, which were recently recognized as a new class of DDR players. CNAs in genes/gene families, involved in MErT/EMT and DDR, were recurrent across patients and mostly segregated in the MErT/EMT category. In addition, recurrent gains of regions in chromosome 1 involving many MErT/EMT gene families and loss of one arm or the entire chromosome 6 affecting relevant immune-regulatory genes were recorded. CONCLUSIONS: The emerging picture is an extreme inter-tumor heterogeneity, characterized by the concurrent deregulation of the DDR and MErT/EMT dynamic and plastic programs that could favour genomic instability and explain the refractory DSRCT profile.
Asunto(s)
Daño del ADN/genética , Tumor Desmoplásico de Células Pequeñas Redondas/genética , Transición Epitelial-Mesenquimal/genética , Genómica/métodos , Tumor Desmoplásico de Células Pequeñas Redondas/patología , Femenino , Humanos , MasculinoRESUMEN
BACKGROUND: The issue of overdiagnosis in low-dose computed tomography (LDCT) screening trials could be addressed by the development of complementary biomarkers able to improve detection of aggressive disease. The mutation profile of LDCT screening-detected lung tumors is currently unknown. METHODS: Targeted next-generation sequencing was performed on 94 LDCT screening-detected lung tumors. Associations with clinicopathologic features, survival, and the risk profile of a plasma microRNA signature classifier were analyzed. RESULTS: The mutational spectrum and frequency observed in screening series was similar to that reported in public data sets, although a larger number of tumors without mutations in driver genes was detected. The 5-year overall survival (OS) rates of patients with and without mutations in the tumors were 66% and 100%, respectively (p = 0.015). By combining the mutational status with the microRNA signature classifier risk profile, patients were stratified into three groups with 5-year OS rates ranging from 42% to 97% (p < 0.0001) and the prognostic value was significant after controlling for stage (p = 0.02). CONCLUSION: Tumor mutational status along with a microRNA-based liquid biopsy can provide additional information in planning clinical follow-up in lung cancer LDCT screening programs.
Asunto(s)
Adenocarcinoma/mortalidad , Biomarcadores de Tumor/genética , Carcinoma de Células Escamosas/mortalidad , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Neoplasias Pulmonares/mortalidad , Mutación , Carcinoma Pulmonar de Células Pequeñas/mortalidad , Adenocarcinoma/genética , Adenocarcinoma/patología , Adulto , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Detección Precoz del Cáncer , Femenino , Estudios de Seguimiento , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , Pronóstico , Carcinoma Pulmonar de Células Pequeñas/genética , Carcinoma Pulmonar de Células Pequeñas/patología , Tasa de Supervivencia , Tomografía Computarizada por Rayos X/métodosRESUMEN
BACKGROUND: Androgen insensitivity syndrome (AIS), a disorder of sexual development in 46, XY individuals, is caused by loss-of-function mutations in the androgen receptor (AR) gene. A variety of tumors have been reported in association with AIS, but no cases with colorectal cancer (CRC) have been described. CASE PRESENTATION: Here, we present a male patient with AIS who developed multiple early-onset CRCs and his pedigree. His first cousin was diagnosed with AIS and harbored the same AR gene mutation, but with no signs of CRC. The difference in clinical management for the two patients was that testosterone treatment was given to the proband for a much longer time compared with the cousin. The CRC family history was negative, and no germline mutations in well-known CRC-related genes were identified. A single nucleotide polymorphism array revealed a microduplication on chromosome 22q11.22 that encompassed a microRNA potentially related to CRC pathogenesis. In the proband, whole exome sequencing identified a polymorphism in an oncogene and 13 rare loss-of-function variants, of which two were in CRC-related genes and four were in genes associated with other human cancers. CONCLUSIONS: By pathway analysis, all inherited germline genetic events were connected in a unique network whose alteration in the proband, together with continuous testosterone stimulation, may have played a role in CRC pathogenesis.