Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell Mol Life Sci ; 81(1): 54, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38261036

RESUMEN

In embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), the expression of an RNA-binding pluripotency-relevant protein, LIN28, and the absence of its antagonist, the tumor-suppressor microRNA (miRNA) let-7, play a key role in maintaining pluripotency. Muse cells are non-tumorigenic pluripotent-like stem cells residing in the bone marrow, peripheral blood, and organ connective tissues as pluripotent surface marker SSEA-3(+). They express pluripotency genes, differentiate into triploblastic-lineage cells, and self-renew at the single cell level. Muse cells do not express LIN28 but do express let-7 at higher levels than in iPSCs. In Muse cells, we demonstrated that let-7 inhibited the PI3K-AKT pathway, leading to sustainable expression of the key pluripotency regulator KLF4 as well as its downstream genes, POU5F1, SOX2, and NANOG. Let-7 also suppressed proliferation and glycolysis by inhibiting the PI3K-AKT pathway, suggesting its involvement in non-tumorigenicity. Furthermore, the MEK/ERK pathway is not controlled by let-7 and may have a pivotal role in maintaining self-renewal and suppression of senescence. The system found in Muse cells, in which the tumor suppressor let-7, but not LIN28, tunes the expression of pluripotency genes, might be a rational cell system conferring both pluripotency-like properties and a low risk for tumorigenicity.


Asunto(s)
Alprostadil , Fosfatidilinositol 3-Quinasas , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt , Células Madre Embrionarias , Expresión Génica
2.
Cell Mol Life Sci ; 81(1): 297, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38992309

RESUMEN

Muse cells, identified as cells positive for the pluripotent surface marker SSEA-3, are pluripotent-like endogenous stem cells located in the bone marrow (BM), peripheral blood, and organ connective tissues. The detailed characteristics of SSEA-3(+) cells in extraembryonic tissue, however, are unknown. Here, we demonstrated that similar to human-adult tissue-Muse cells collected from the BM, adipose tissue, and dermis as SSEA-3(+), human-umbilical cord (UC)-SSEA-3(+) cells express pluripotency markers, differentiate into triploblastic-lineage cells at a single cell level, migrate to damaged tissue, and exhibit low telomerase activity and non-tumorigenicity. Notably, ~ 20% of human-UC-SSEA-3(+) cells were negative for X-inactive specific transcript (XIST), a naïve pluripotent stem cell characteristic, whereas all human adult tissue-Muse cells are XIST-positive. Single-cell RNA sequencing revealed that the gene expression profile of human-UC-SSEA-3(+) cells was more similar to that of human post-implantation blastocysts than human-adult tissue-Muse cells. The DNA methylation level showed the same trend, and notably, the methylation levels in genes particularly related to differentiation were lower in human-UC-SSEA-3(+) cells than in human-adult tissue-Muse cells. Furthermore, human-UC-SSEA-3(+) cells newly express markers specific to extraembryonic-, germline-, and hematopoietic-lineages after differentiation induction in vitro whereas human-adult tissue-Muse cells respond only partially to the induction. Among various stem/progenitor cells in living bodies, those that exhibit properties similar to post-implantation blastocysts in a naïve state have not yet been found in humans. Easily accessible human-UC-SSEA-3(+) cells may be a valuable tool for studying early-stage human development and human reproductive medicine.


Asunto(s)
Blastocisto , Diferenciación Celular , Antígenos Embrionarios Específico de Estadio , Cordón Umbilical , Humanos , Antígenos Embrionarios Específico de Estadio/metabolismo , Cordón Umbilical/citología , Blastocisto/citología , Blastocisto/metabolismo , Antígenos de Carbohidratos Asociados a Tumores/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Análisis de la Célula Individual , Telomerasa/metabolismo , Telomerasa/genética , Femenino
3.
BJU Int ; 133(3): 332-340, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37983592

RESUMEN

OBJECTIVE: To evaluate the effect of intravenous administration of human multilineage-differentiating stress-enduring (Muse) cells on rat postoperative erectile dysfunction (ED) with cavernous nerve (CN) injury without an immunosuppressant. MATERIALS AND METHODS: Male Sprague-Dawley rats were randomised into three groups after CN crush injury. Either human-Muse cells, non-Muse mesenchymal stem cells (MSCs) (both 1.0 × 105 cells), or vehicle was infused intravenously at 3 h after CN injury without immunosuppressant. Erectile function was assessed by measuring intracavernous pressure (ICP) and arterial pressure (AP) during pelvic nerve electrostimulation 28 days after surgery. At 48 h and 28 days after intravenous infusion of Muse cells, the homing of Muse cells and non-Muse MSCs was evaluated in the major pelvic ganglion (MPG) after CN injury. In addition, expressions of C-X-C motif chemokine ligand (Cxcl12) and glial cell line-derived neurotrophic factor (Gdnf) in the MPG were examined by real-time polymerase chain reaction. Statistical analyses and comparisons among groups were performed using one-way analysis of variance followed by the Tukey test for parametric data and Kruskal-Wallis test followed by the Dunn-Bonferroni test for non-parametric data. RESULTS: The mean (SEM) ICP/AP values at 28 days were 0.51 (0.02) in the Muse cell group, 0.37 (0.03) in the non-Muse MSC group, and 0.36 (0.04) in the vehicle group, showing a significant positive response in the Muse cell group compared with the non-Muse and vehicle groups (P = 0.013 and P = 0.010, respectively). In the MPG, Muse cells were observed to be engrafted at 48 h and expressed Schwann cell markers S100 (~46%) and glial fibrillary acidic protein (~24%) at 28 days, while non-Muse MSCs were basically not engrafted at 48 h. Higher gene expression of Cxcl12 (P = 0.048) and Gdnf (P = 0.040) was found in the MPG of the Muse group than in the vehicle group 48 h after infusion. CONCLUSION: Intravenously engrafted human Muse cells recovered rat erectile function after CN injury in a rat model possibly by upregulating Cxcl12 and Gdnf.


Asunto(s)
Disfunción Eréctil , Ratas , Humanos , Masculino , Animales , Disfunción Eréctil/etiología , Disfunción Eréctil/terapia , Ratas Sprague-Dawley , Factor Neurotrófico Derivado de la Línea Celular Glial/farmacología , Alprostadil/farmacología , Modelos Animales de Enfermedad , Erección Peniana/fisiología , Inmunosupresores , Pene
4.
Cell Commun Signal ; 21(1): 262, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37770897

RESUMEN

DNA damage resulting from genotoxic injury can initiate cellular senescence, a state characterized by alterations in cellular metabolism, lysosomal activity, and the secretion of factors collectively known as the senescence-associated secretory phenotype (SASP). Senescence can have beneficial effects on our bodies, such as anti-cancer properties, wound healing, and tissue development, which are attributed to the SASP produced by senescent cells in their intermediate stages. However, senescence can also promote cancer and aging, primarily due to the pro-inflammatory activity of SASP.Studying senescence is complex due to various factors involved. Genotoxic stimuli cause random damage to cellular macromolecules, leading to variations in the senescent phenotype from cell to cell, despite a shared program. Furthermore, senescence is a dynamic process that cannot be analyzed as a static endpoint, adding further complexity.Investigating SASP is particularly intriguing as it reveals how a senescence process triggered in a few cells can spread to many others, resulting in either positive or negative consequences for health. In our study, we conducted a meta-analysis of the protein content of SASP obtained from different research groups, including our own. We categorized the collected omic data based on: i) cell type, ii) harmful agent, and iii) senescence stage (early and late senescence).By employing Gene Ontology and Network analysis on the omic data, we identified common and specific features of different senescent phenotypes. This research has the potential to pave the way for the development of new senotherapeutic drugs aimed at combating the negative consequences associated with the senescence process. Video Abstract.


Asunto(s)
Neoplasias , Senoterapéuticos , Humanos , Secretoma , Envejecimiento , Senescencia Celular , Neoplasias/metabolismo , Fenotipo
5.
Cell Mol Life Sci ; 79(11): 542, 2022 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-36203068

RESUMEN

Stem cells undergo cytokine-driven differentiation, but this process often takes longer than several weeks to complete. A novel mechanism for somatic stem cell differentiation via phagocytosing 'model cells' (apoptotic differentiated cells) was found to require only a short time frame. Pluripotent-like Muse cells, multipotent mesenchymal stem cells (MSCs), and neural stem cells (NSCs) phagocytosed apoptotic differentiated cells via different phagocytic receptor subsets than macrophages. The phagocytosed-differentiated cell-derived contents (e.g., transcription factors) were quickly released into the cytoplasm, translocated into the nucleus, and bound to promoter regions of the stem cell genomes. Within 24 ~ 36 h, the cells expressed lineage-specific markers corresponding to the phagocytosed-differentiated cells, both in vitro and in vivo. At 1 week, the gene expression profiles were similar to those of the authentic differentiated cells and expressed functional markers. Differentiation was limited to the inherent potential of each cell line: triploblastic-, adipogenic-/chondrogenic-, and neural-lineages in Muse cells, MSCs, and NSCs, respectively. Disruption of phagocytosis, either by phagocytic receptor inhibition via small interfering RNA or annexin V treatment, impeded differentiation in vitro and in vivo. Together, our findings uncovered a simple mechanism by which differentiation-directing factors are directly transferred to somatic stem cells by phagocytosing apoptotic differentiated cells to trigger their rapid differentiation into the target cell lineage.


Asunto(s)
Células Madre Adultas , Células-Madre Neurales , Alprostadil , Anexina A5 , Diferenciación Celular , Citocinas , Fagocitosis , ARN Interferente Pequeño , Factores de Transcripción
6.
Int Urogynecol J ; 33(5): 1293-1301, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35333929

RESUMEN

INTRODUCTION AND HYPOTHESIS: We investigated the effects of locally administered human multilineage-differentiating stress enduring (Muse) cells, nontumorigenic pluripotent-like endogenous stem cells, on bladder tissues, function, and nociceptive behavior in a chemically induced Hunner-type interstitial cystitis (HIC)-like rat model without immunosuppressant. METHODS: Chemical cystitis was induced by intravesical instillation of 0.2 N hydrochloride (HCl) for 15 min in female F344 rats. SSEA-3+ Muse cells, SSEA-3- non-Muse cells or Hanks' balanced salt solution (HBSS; vehicle) were injected into the anterior and posterior bladder wall at each 1×104 cells/10 µl 6 h after HCl application. The sham group received HBSS without HCl instillation. Urinary frequency was assessed using metabolic cages, cystometrograms, nociceptive behavior, and histological analysis of the bladder and L6 spinal cord. RESULTS: Increases in urinary frequency and decreases in bladder capacity compared with the sham group were observed in the vehicle and non-Muse groups, but not in the Muse group, at 1 week. Significant increases in nociceptive behavior compared with the sham group and the expression of TNFα in the bladder and c-Fos in the bilateral dorsal horns of L6 spinal cord were also observed in the vehicle and non-Muse groups, whereas these changes were not seen in the Muse group at 1 week. Histological analysis exhibited a higher proportion of injected Muse cells remaining in the urothelial basal layer and lamina propria of the bladder than non-Muse cells until 4 weeks. CONCLUSIONS: Muse cell therapy could be a promising modality for treating HIC.


Asunto(s)
Cistitis Intersticial , Cistitis , Alprostadil/efectos adversos , Animales , Femenino , Humanos , Nocicepción , Ratas , Ratas Endogámicas F344
7.
Surg Today ; 52(4): 603-615, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34687364

RESUMEN

INTRODUCTION: We examined the effect of intravenously injected human multilineage-differentiating stress-enduring (Muse) cells, non-tumorigenic endogenous reparative stem cells already used in clinical trials, on a severe acute pancreatitis (SAP) mouse model without immunosuppressants. METHODS: Human Muse cells (1.0 × 105 cells) collected from mesenchymal stem cells (MSCs) as SSEA-3(+) were injected into a C57BL/6 mouse model via the jugular vein 6 h after SAP-induction with taurocholate. The control group received saline or the same number of SSEA-3(-)-non-Muse MSCs. RESULTS: Edematous parameters, F4/80(+) macrophage infiltration and terminal deoxynucleotidyl transferase dUTP nick-end labeling positivity was the lowest and the number of proliferating endogenous pancreatic progenitors (CK18(+)/Ki67(+) cells) the highest in the Muse group among the three groups, with statistical significance, at 72 h. An enzyme-linked immunosorbent assay and quantitative polymerase chain reaction demonstrated that in vitro production of VEGF, HGF, IGF-1, and MMP-2, which are relevant to tissue protection, anti-inflammation, and anti-fibrosis, were higher in Muse cells than in non-Muse MSCs, particularly when cells were cultured in SAP mouse serum. Consistently, the pancreas of animals in the Muse group contained higher amounts of those factors according to Western blotting at 18 h than that in the non-Muse MSCs and control groups. CONCLUSIONS: Intravenous injection of human Muse cells was suggested to be effective for attenuating edema, inflammation and apoptosis in the acute phase of SAP.


Asunto(s)
Inmunosupresores , Pancreatitis , Enfermedad Aguda , Animales , Diferenciación Celular , Humanos , Inyecciones Intravenosas , Ratones , Ratones Endogámicos C57BL , Pancreatitis/terapia
8.
Am J Transplant ; 21(6): 2025-2039, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33350582

RESUMEN

Small-for-size syndrome (SFSS) has a poor prognosis due to excessive shear stress and sinusoidal microcirculatory disturbances in the acute phase after living-donor liver transplantation (LDLT). Multilineage-differentiating stress enduring (Muse) cells are reparative stem cells found in various tissues and currently under clinical trials. These cells selectively home to damaged sites via the sphingosine-1-phosphate (S1P)-S1P receptor 2 system and repair damaged tissue by pleiotropic effects, including tissue protection and damaged/apoptotic cell replacement by differentiating into tissue-constituent cells. The effects of intravenously administered human bone marrow-Muse cells and -mesenchymal stem cells (MSCs) (4 × 105 ) on liver sinusoidal endothelial cells (LSECs) were examined in a rat SFSS model without immunosuppression. Compared with MSCs, Muse cells intensively homed to the grafted liver, distributed to the sinusoids and vessels, and delivered improved blood chemistry and Ki-67(+) proliferative hepatocytes and -LSECs within 3 days. Tissue clearing and three-dimensional imaging by multiphoton laser confocal microscopy revealed maintenance of the sinusoid continuity, organization, and surface area, as well as decreased sinusoid interruption in the Muse group. Small-interfering RNA-induced knockdown of hepatocyte growth factor and vascular endothelial growth factor-A impaired the protective effect of Muse cells on LSECs. Intravenous injection of Muse cells might be a feasible approach for LDLT with less recipient burden.


Asunto(s)
Trasplante de Hígado , Alprostadil , Animales , Capilares , Diferenciación Celular , Células Endoteliales , Humanos , Infusiones Intravenosas , Hígado , Donadores Vivos , Microcirculación , Ratas , Factor A de Crecimiento Endotelial Vascular
9.
Mol Ther ; 28(1): 100-118, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31607541

RESUMEN

Shiga toxin-producing Escherichia coli (STEC) causes hemorrhagic colitis, hemolytic uremic syndrome, and acute encephalopathies that may lead to sudden death or severe neurologic sequelae. Current treatments, including immunoglobulin G (IgG) immunoadsorption, plasma exchange, steroid pulse therapy, and the monoclonal antibody eculizumab, have limited effects against the severe neurologic sequelae. Multilineage-differentiating stress-enduring (Muse) cells are endogenous reparative non-tumorigenic stem cells that naturally reside in the body and are currently under clinical trials for regenerative medicine. When administered intravenously, Musecells accumulate to the damaged tissue, where they exert anti-inflammatory, anti-apoptotic, anti-fibrotic, and immunomodulatory effects, and replace damaged cells by differentiating into tissue-constituent cells. Here, severely immunocompromised non-obese diabetic/severe combined immunodeficiency (NOD-SCID) mice orally inoculated with 9 × 109 colony-forming units of STEC O111 and treated 48 h later with intravenous injection of 5 × 104 Muse cells exhibited 100% survival and no severe after-effects of infection. Suppression of granulocyte-colony-stimulating factor (G-CSF) by RNAi abolished the beneficial effects of Muse cells, leading to a 40% death and significant body weight loss, suggesting the involvement of G-CSF in the beneficial effects of Muse cells in STEC-infected mice. Thus, intravenous administration of Muse cells could be a candidate therapeutic approach for preventing fatal encephalopathy after STEC infection.


Asunto(s)
Encefalopatías/microbiología , Encefalopatías/terapia , Trasplante de Células/métodos , Infecciones por Escherichia coli/terapia , Trasplante de Células Madre Mesenquimatosas/métodos , Toxina Shiga II/metabolismo , Escherichia coli Shiga-Toxigénica/metabolismo , Adulto , Anciano de 80 o más Años , Animales , Encéfalo/patología , Encefalopatías/epidemiología , Encefalopatías/metabolismo , Modelos Animales de Enfermedad , Brotes de Enfermedades , Infecciones por Escherichia coli/epidemiología , Infecciones por Escherichia coli/microbiología , Femenino , Humanos , Inyecciones Intravenosas , Japón/epidemiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Ratones Endogámicos NOD , Ratones SCID , Resultado del Tratamiento
10.
Surg Today ; 51(4): 634-650, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32915286

RESUMEN

INTRODUCTION: Multilineage-differentiating stress-enduring (Muse) cells are non-tumorigenic endogenous pluripotent-like cells residing in the bone marrow that exert a tissue reparative effect by replacing damaged/apoptotic cells through spontaneous differentiation into tissue-constituent cells. Post-hepatectomy liver failure (PHLF) is a potentially fatal complication. The main purpose of this study was to evaluate the safety and efficiency of allogeneic Muse cell administration via the portal vein in a swine model of PHLF. METHODS: Swine Muse cells, collected from swine bone marrow-mesenchymal stem cells (MSCs) as SSEA-3(+) cells, were examined for their characteristics. Then, 1 × 107 allogeneic-Muse cells and allogeneic-MSCs and vehicle were injected via the portal vein in a 70% hepatectomy swine model. RESULTS: Swine Muse cells exhibited characteristics comparable to previously reported human Muse cells. Compared to the MSC and vehicle groups, the Muse group showed specific homing of the administered cells into the liver, resulting in improvements in the control of hyperbilirubinemia (P = 0.04), prothrombin international normalized ratio (P = 0.05), and suppression of focal necrosis (P = 0.04). Integrated Muse cells differentiated spontaneously into hepatocyte marker-positive cells. CONCLUSIONS: Allogeneic Muse cell administration may provide a reparative effect and functional recovery in a 70% hepatectomy swine model and thus may contribute to the treatment of PHLF.


Asunto(s)
Hepatectomía/efectos adversos , Fallo Hepático/etiología , Fallo Hepático/terapia , Trasplante de Células Madre Mesenquimatosas/métodos , Complicaciones Posoperatorias/etiología , Complicaciones Posoperatorias/terapia , Animales , Modelos Animales de Enfermedad , Vena Porta , Recuperación de la Función , Seguridad , Porcinos , Trasplante Homólogo , Resultado del Tratamiento
11.
Stroke ; 51(9): 2854-2862, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32811374

RESUMEN

Stem cell-based regenerative therapies may rescue the central nervous system following ischemic stroke. Mesenchymal stem cells exhibit promising regenerative capacity in in vitro studies but display little to no incorporation in host tissue after transplantation in in vivo models of stroke. Despite these limitations, clinical trials using mesenchymal stem cells have produced some functional benefits ascribed to their ability to modulate the host's inflammatory response coupled with their robust safety profile. Regeneration of ischemic brain tissue using stem cells, however, remains elusive in humans. Multilineage-differentiating stress-enduring (Muse) cells are a distinct subset of mesenchymal stem cells found sporadically in connective tissue of nearly every organ. Since their discovery in 2010, these endogenous reparative stem cells have been investigated for their therapeutic potential against a variety of diseases, including acute myocardial infarction, stroke, chronic kidney disease, and liver disease. Preclinical studies have exemplified Muse cells' unique ability mobilize, differentiate, and engraft into damaged host tissue. Intravenously transplanted Muse cells in mouse lacunar stroke models afforded functional recovery and long-term engraftment into the host neural network. This mini-review article highlights these biological properties that make Muse cells an exceptional candidate donor source for cell therapy in ischemic stroke. Elucidating the mechanism behind the therapeutic potential of Muse cells will undoubtedly help optimize stem cell therapy for stroke and advance the field of regenerative medicine.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas/métodos , Accidente Cerebrovascular/terapia , Animales , Humanos , Recuperación de la Función , Medicina Regenerativa
12.
Stroke ; 51(2): 601-611, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31826733

RESUMEN

Background and Purpose- Multilineage-differentiating stress-enduring cells are endogenous nontumorigenic reparative pluripotent-like stem cells found in bone marrow, peripheral blood, and connective tissues. Topically administered human multilineage-differentiating stress-enduring cells into rat/mouse stroke models differentiated into neural cells and promoted clinically relevant functional recovery. However, critical questions on the appropriate timing and dose, and safety of the less invasive intravenous administration of clinical-grade multilineage-differentiating stress-enduring cell-based product CL2020 remain unanswered. Methods- Using an immunodeficient mouse lacunar model, CL2020 was administered via the cervical vein in different doses (high dose=5×104 cells/body; medium dose=1×104 cells/body; low dose=5×103 cells/body) at subacute phase (≈9 days after onset) and chronic phase (≈30 days). Cylinder test, depletion of human cells by diphtheria toxin administration, immunohistochemistry, and human specific-genome detection were performed. Results- Tumorigenesis and adverse effects were not detected for up to 22 weeks. The high-dose group displayed significant functional recovery compared with the vehicle group in cylinder test in subacute-phase-treated and chronic-phase-treated animals after 6 weeks and 8 weeks post-injection, respectively. In the high-dose group of subacute-phase-treated animals, robust and stable recovery in cylinder test persisted up to 22 weeks compared with the vehicle group. In both groups, intraperitoneal injection of diphtheria toxin abrogated the functional recovery. Anti-human mitochondria revealed CL2020 distributed mainly in the peri-infarct area at 1, 10, and 22 weeks and expressed NeuN (neuronal nuclei)- and MAP-2 (microtubule-associated protein-2)-immunoreactivity. Conclusions- Intravenously administered CL2020 was safe, migrated to the peri-infarct area, and afforded functional recovery in experimental stroke.


Asunto(s)
Trasplante de Células Madre , Accidente Vascular Cerebral Lacunar , Accidente Cerebrovascular/cirugía , Animales , Encéfalo/efectos de los fármacos , Encéfalo/fisiopatología , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Linaje de la Célula/fisiología , Movimiento Celular/fisiología , Modelos Animales de Enfermedad , Ratones Transgénicos , Recuperación de la Función/fisiología , Trasplante de Células Madre/métodos , Células Madre/citología , Accidente Cerebrovascular/fisiopatología , Accidente Vascular Cerebral Lacunar/fisiopatología , Accidente Vascular Cerebral Lacunar/terapia
13.
Circ Res ; 122(8): 1069-1083, 2018 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-29475983

RESUMEN

RATIONALE: Multilineage-differentiating stress enduring (Muse) cells, pluripotent marker stage-specific embryonic antigen-3+ cells, are nontumorigenic endogenous pluripotent-like stem cells obtainable from various tissues including the bone marrow. Their therapeutic efficiency has not been validated in acute myocardial infarction. OBJECTIVE: The main objective of this study is to clarify the efficiency of intravenously infused rabbit autograft, allograft, and xenograft (human) bone marrow-Muse cells in a rabbit acute myocardial infarction model and their mechanisms of tissue repair. METHODS AND RESULTS: In vivo dynamics of Nano-lantern-labeled Muse cells showed preferential homing of the cells to the postinfarct heart at 3 days and 2 weeks, with ≈14.5% of injected GFP (green fluorescent protein)-Muse cells estimated to be engrafted into the heart at 3 days. The migration and homing of the Muse cells was confirmed pharmacologically (S1PR2 [sphingosine monophosphate receptor 2]-specific antagonist JTE-013 coinjection) and genetically (S1PR2-siRNA [small interfering ribonucleic acid]-introduced Muse cells) to be mediated through the S1P (sphingosine monophosphate)-S1PR2 axis. They spontaneously differentiated into cells positive for cardiac markers, such as cardiac troponin-I, sarcomeric α-actinin, and connexin-43, and vascular markers. GCaMP3 (GFP-based Ca calmodulin probe)-labeled Muse cells that engrafted into the ischemic region exhibited increased GCaMP3 fluorescence during systole and decreased fluorescence during diastole. Infarct size was reduced by ≈52%, and the ejection fraction was increased by ≈38% compared with vehicle injection at 2 months, ≈2.5 and ≈2.1 times higher, respectively, than that induced by mesenchymal stem cells. These effects were partially attenuated by the administration of GATA4-gene-silenced Muse cells. Muse cell allografts and xenografts efficiently engrafted and recovered functions, and allografts remained in the tissue and sustained functional recovery for up to 6 months without immunosuppression. CONCLUSIONS: Muse cells may provide reparative effects and robust functional recovery and may, thus, provide a novel strategy for the treatment of acute myocardial infarction.


Asunto(s)
Lisofosfolípidos/fisiología , Infarto del Miocardio/cirugía , Células Madre Pluripotentes/trasplante , Receptores de Lisoesfingolípidos/fisiología , Esfingosina/análogos & derivados , Aloinjertos , Animales , Autoinjertos , Diferenciación Celular , Movimiento Celular/fisiología , Factor de Transcripción GATA4/antagonistas & inhibidores , Factor de Transcripción GATA4/genética , Factor de Transcripción GATA4/fisiología , Supervivencia de Injerto , Proteínas Fluorescentes Verdes/análisis , Xenoinjertos , Humanos , Luciferasas/análisis , Proteínas Luminiscentes/análisis , Masculino , Infarto del Miocardio/patología , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Pirazoles/farmacología , Piridinas/farmacología , Interferencia de ARN , ARN Interferente Pequeño/farmacología , Conejos , Receptores de Lisoesfingolípidos/antagonistas & inhibidores , Receptores de Lisoesfingolípidos/genética , Proteínas Recombinantes de Fusión/análisis , Especificidad de la Especie , Esfingosina/fisiología , Receptores de Esfingosina-1-Fosfato
14.
Glia ; 67(5): 950-966, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30637802

RESUMEN

Direct conversion is considered a promising approach to obtain tissue-specific cells for cell therapies; however, this strategy depends on exogenous gene expression that may cause undesired adverse effects such as tumorigenesis. By optimizing the Schwann cell induction system, which was originally developed for trans-differentiation of bone marrow mesenchymal stem cells into Schwann cells, we established a system to directly convert adult human skin fibroblasts into cells comparable to authentic human Schwann cells without gene introduction. Serial treatments with beta-mercaptoethanol, retinoic acid, and finally a cocktail of basic fibroblast growth factor, forskolin, platelet-derived growth factor-AA, and heregulin-ß1 (EGF domain) converted fibroblasts into cells expressing authentic Schwann cell markers at an efficiency of approximately 75%. Genome-wide gene expression analysis suggested the conversion of fibroblasts into the Schwann cell-lineage. Transplantation of induced Schwann cells into severed peripheral nerve of rats facilitated axonal regeneration and robust functional recovery in sciatic function index comparable to those of authentic human Schwann cells. The contributions of induced Schwann cells to myelination of regenerated axons and re-formation of neuromuscular junctions were also demonstrated. Our data clearly demonstrated that cells comparable to functional Schwann cells feasible for the treatment of neural disease can be induced from adult human skin fibroblasts without gene introduction. This direct conversion system will be beneficial for clinical applications to peripheral and central nervous system injuries and demyelinating diseases.


Asunto(s)
Diferenciación Celular/fisiología , Fibroblastos/fisiología , Traumatismos de los Nervios Periféricos/cirugía , Recuperación de la Función/fisiología , Células de Schwann/fisiología , Células de Schwann/trasplante , Animales , Antineoplásicos/farmacología , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Fibroblastos/efectos de los fármacos , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Locomoción/fisiología , Masculino , Microscopía Electrónica , Proteína P0 de la Mielina/metabolismo , Traumatismos de los Nervios Periféricos/fisiopatología , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Factores de Transcripción SOXE/metabolismo , Células de Schwann/ultraestructura , Suero/fisiología , Piel/citología , Factores de Tiempo , Tretinoina/farmacología
15.
Dev Growth Differ ; 60(6): 326-340, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29984494

RESUMEN

Proliferation of ependymal cells of the adult spinal cord (SCEp cells) in the intact condition has been considered as a quite rare event. To visualize proliferating/proliferated SCEp cells, we used the intensive 5-bromo-2'-deoxyuridine (BrdU) administration method to find that about two cells in the ependymal layer incorporated BrdU in a 10-µm-thick section. Because these two cells were not considered to undergo further proliferation, we analyzed the positioning and motility of two neighboring BrdU-incorporated proliferated cells and elucidated the tendency of the movement of SCEp cells to the outer side inside the ependymal layer. Even if it was rare, one of the proliferated cells in the ependymal layer differentiated into astrocytes. Gene introduction of Notch intracellular domain (NICD), a constitutively active form of Notch1, into SCEp cells demonstrated both increase in proliferation and induction of differentiation into astrocytes. Overexpression of Sox2 promoted proliferation in SCEp cells. The reaction of gene introduction of NICD and Sox2 indicates the similarity of intracellular signaling between SCEp cells and neural stem cells. Also, considering the fact that SCEp cells express these two factors in the intact condition, Notch and Sox2 are important for the cell fate control of SCEp cells in the intact condition.


Asunto(s)
Astrocitos/metabolismo , Diferenciación Celular , Proliferación Celular , Epéndimo/metabolismo , Células-Madre Neurales/metabolismo , Transducción de Señal/fisiología , Animales , Antígenos de Diferenciación/biosíntesis , Antígenos de Diferenciación/fisiología , Astrocitos/citología , Epéndimo/citología , Regulación de la Expresión Génica , Masculino , Células-Madre Neurales/citología , Ratas , Ratas Wistar , Factores de Transcripción SOXB1
16.
Circ J ; 82(2): 561-571, 2018 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-28931784

RESUMEN

BACKGROUND: Multilineage differentiating stress-enduring (Muse) cells are SSEA3+and CD105+double-positive pluripotent-like stem cells. We aimed to examine the mobilization of Muse cells into peripheral blood after acute myocardial infarction (AMI) and their effects on left ventricular (LV) function and remodeling.Methods and Results:In 79 patients with AMI, 44 patients with coronary artery disease (CAD), and 64 normal subjects (Control), we measured the number of Muse cells in the peripheral blood by fluorescence-activated cell sorting. Muse cells were measured on days 0, 1, 7, 14, and 21 after AMI. Plasma sphingosine-1-phosphate (S1P) levels were measured. Cardiac echocardiography was performed in the acute (within 7 days) and chronic (6 months) phases of AMI. Muse cell number on day 1 was significantly higher in the AMI (276±137 cells/100 µL) than in the CAD (167±89 cells/100 µL) and Control (164±125 cells/100 µL) groups. Muse cell number peaked on day 1, and had gradually decreased on day 21. Muse cell number positively correlated with plasma S1P levels. Patients with a higher increase in the number of Muse cells in the peripheral blood but not those with a lower increase in number of Muse cells in the acute phase showed improved LV function and remodeling in the chronic phase. CONCLUSIONS: Endogenous Muse cells were mobilized into the peripheral blood after AMI. The number of Muse cells could be a predictor of prognosis in patients with AMI.


Asunto(s)
Movilización de Célula Madre Hematopoyética , Infarto del Miocardio/patología , Función Ventricular Izquierda , Remodelación Ventricular , Anciano , Estudios de Casos y Controles , Recuento de Células , Enfermedad Crónica , Humanos , Lisofosfolípidos/sangre , Masculino , Persona de Mediana Edad , Células Madre de Sangre Periférica , Valor Predictivo de las Pruebas , Pronóstico , Esfingosina/análogos & derivados , Esfingosina/sangre , Células Madre , Factores de Tiempo
17.
Adv Exp Med Biol ; 1103: 1-11, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30484221

RESUMEN

Multilineage-differentiating stress-enduring (Muse) cells, identified as cells positive for the pluripotent marker stage-specific embryonic antigen (SSEA-3+), were discovered as stress-tolerant pluripotent stem cells from among mesenchymal stem cells (MSCs) and fibroblasts, as well as from the adult human bone marrow mononucleated fraction. MSCs are a crude population of cells that differentiate into multiple cell types covering all three germ layers in low proportion and were thus deduced to contain a genuine pluripotent stem cell subpopulation. Muse cells constitute several percent of MSCs and 1 of ~3000 bone marrow mononucleated cells. They exhibit pluripotent gene expression as well as trilineage differentiation and self-renewal capabilities at the single-cell level, while, in contrast, MSC cells other than Muse cells do not exhibit these characteristics. These characteristics indicate that Muse cells correspond to the subpopulation of MSC cells responsible for the pluripotent aspect of MSCs. In addition to their pluripotency, Muse cells play an important role in vivo as endogenous stem cells that contribute to tissue homeostasis through daily reparative maintenance and to tissue reconstruction through their unique reparative functions following serious tissue damage. This chapter describes how my research team discovered Muse cells.


Asunto(s)
Linaje de la Célula , Células Madre Mesenquimatosas/citología , Células Madre Pluripotentes/citología , Estrés Fisiológico , Diferenciación Celular , Fibroblastos/citología , Humanos
18.
Adv Exp Med Biol ; 1103: 305-307, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30484237

RESUMEN

Among many kinds of somatic stem cells, hematopoietic stem cells are the cells that have been successfully applied to treating leukemia patients as forms of bone marrow and cord blood transplantation. Mesenchymal stem cells, collectable from several sources including the bone marrow and adipose tissue, are also widely applied to clinical trials for their easy accessibility and low risks of tumorigenesis, while their outcomes were shown to be not clinically relevant in several target diseases. The most important issue for the stem cells is whether the cells are safe and effective for curing diseases. In this chapter, the outline of the clinical trial in Muse cells is discussed.


Asunto(s)
Células Madre Pluripotentes/citología , Trasplante de Células Madre , Tejido Adiposo/citología , Células de la Médula Ósea/citología , Ensayos Clínicos como Asunto , Humanos , Células Madre Mesenquimatosas/citología
19.
Adv Exp Med Biol ; 1103: 13-41, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30484222

RESUMEN

Multilineage-differentiating stress-enduring (Muse) cells exhibit the core characteristics of pluripotent stem cells, namely, the expression of pluripotency markers and the capacity for trilineage differentiation both in vitro and in vivo and self-renewability. In addition, Muse cells have unique characteristics not observed in other pluripotent stem cells such as embryonic stem cells, control of pluripotency by environmental switch of adherent suspension, symmetric and asymmetric cell division, expression of factors relevant to stress tolerance, and distinctive tissue distribution. Pluripotent stem cells were recently classified into two discrete states, naïve and primed. These two states have multiple functional differences, including their proliferation rate, molecular properties, and growth factor dependency. The properties exhibited by Muse cells are similar to those of primed pluripotent stem cells while with some uniqueness. In this chapter, we provide a comprehensive description of the basic characteristics of Muse cells.


Asunto(s)
Linaje de la Célula , Células Madre Pluripotentes/citología , Estrés Fisiológico , Diferenciación Celular , Proliferación Celular , Humanos , Péptidos y Proteínas de Señalización Intercelular/fisiología
20.
Adv Exp Med Biol ; 1103: 43-68, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30484223

RESUMEN

The dynamics and actions of Muse cells at a time of physical crisis are unique and highly remarkable compared with other stem cell types. When the living body is in a steady state, low levels of Muse cells are mobilized to the peripheral blood, possibly from the bone marrow, and supplied to the connective tissue of nearly every organ. Under conditions of serious tissue damage, such as acute myocardial infarction and stroke, Muse cells are highly mobilized to the peripheral blood, drastically increasing their numbers in the peripheral blood within 24 h after the onset of tissue injury. The alerting signal, sphingosine-1-phosphate, attracts Muse cells to the damaged site mainly via the sphingosine-1-phosphate receptor 2, enabling them to preferentially home to site of injury. After homing, Muse cells spontaneously differentiate into tissue-compatible cells and replenish new functional cells for tissue repair. Because Muse cells have pleiotropic effects, including paracrine, anti-inflammatory, anti-fibrotic, and anti-apoptotic effects, these cells synergistically deliver long-lasting functional and structural recovery. This chapter describes how Muse cells exert their reparative effects in vivo.


Asunto(s)
Diferenciación Celular , Células Madre Pluripotentes/citología , Regeneración , Heridas y Lesiones/fisiopatología , Movimiento Celular , Humanos , Lisofosfolípidos , Receptores de Lisoesfingolípidos , Esfingosina/análogos & derivados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA