Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Hum Reprod ; 39(1): 258-274, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37873575

RESUMEN

STUDY QUESTION: Does the diagnosis of mosaicism affect ploidy rates across different providers offering preimplantation genetic testing for aneuploidies (PGT-A)? SUMMARY ANSWER: Our analysis of 36 395 blastocyst biopsies across eight genetic testing laboratories revealed that euploidy rates were significantly higher in providers reporting low rates of mosaicism. WHAT IS KNOWN ALREADY: Diagnoses consistent with chromosomal mosaicism have emerged as a third category of possible embryo ploidy outcomes following PGT-A. However, in the era of mosaicism, embryo selection has become increasingly complex. Biological, technical, analytical, and clinical complexities in interpreting such results have led to substantial variability in mosaicism rates across PGT-A providers and clinics. Critically, it remains unknown whether these differences impact the number of euploid embryos available for transfer. Ultimately, this may significantly affect clinical outcomes, with important implications for PGT-A patients. STUDY DESIGN, SIZE, DURATION: In this international, multicenter cohort study, we reviewed 36 395 consecutive PGT-A results, obtained from 10 035 patients across 11 867 treatment cycles, conducted between October 2015 and October 2021. A total of 17 IVF centers, across eight PGT-A providers, five countries and three continents participated in the study. All blastocysts were tested using trophectoderm biopsy and next-generation sequencing. Both autologous and donation cycles were assessed. Cycles using preimplantation genetic testing for structural rearrangements were excluded from the analysis. PARTICIPANTS/MATERIALS, SETTING, METHODS: The PGT-A providers were randomly categorized (A to H). Providers B, C, D, E, F, G, and H all reported mosaicism, whereas Provider A reported embryos as either euploid or aneuploid. Ploidy rates were analyzed using multilevel mixed linear regression. Analyses were adjusted for maternal age, paternal age, oocyte source, number of embryos biopsied, day of biopsy, and PGT-A provider, as appropriate. We compared associations between genetic testing providers and PGT-A outcomes, including the number of chromosomally normal (euploid) embryos determined to be suitable for transfer. MAIN RESULTS AND THE ROLE OF CHANCE: The mean maternal age (±SD) across all providers was 36.2 (±5.2). Our findings reveal a strong association between PGT-A provider and the diagnosis of euploidy and mosaicism. Amongst the seven providers that reported mosaicism, the rates varied from 3.1% to 25.0%. After adjusting for confounders, we observed a significant difference in the likelihood of diagnosing mosaicism across providers (P < 0.001), ranging from 6.5% (95% CI: 5.2-7.4%) for Provider B to 35.6% (95% CI: 32.6-38.7%) for Provider E. Notably, adjusted euploidy rates were highest for providers that reported the lowest rates of mosaicism (Provider B: euploidy, 55.7% (95% CI: 54.1-57.4%), mosaicism, 6.5% (95% CI: 5.2-7.4%); Provider H: euploidy, 44.5% (95% CI: 43.6-45.4%), mosaicism, 9.9% (95% CI: 9.2-10.6%)); and Provider D: euploidy, 43.8% (95% CI: 39.2-48.4%), mosaicism, 11.0% (95% CI: 7.5-14.5%)). Moreover, the overall chance of having at least one euploid blastocyst available for transfer was significantly higher when mosaicism was not reported, when we compared Provider A to all other providers (OR = 1.30, 95% CI: 1.13-1.50). Differences in diagnosing and interpreting mosaic results across PGT-A laboratories raise further concerns regarding the accuracy and relevance of mosaicism predictions. While we confirmed equivalent clinical outcomes following the transfer of mosaic and euploid blastocysts, we found that a significant proportion of mosaic embryos are not used for IVF treatment. LIMITATIONS, REASONS FOR CAUTION: Due to the retrospective nature of the study, associations can be ascertained, however, causality cannot be established. Certain parameters such as blastocyst grade were not available in the dataset. Furthermore, certain platform-related and clinic-specific factors may not be readily quantifiable or explicitly captured in our dataset. As such, a full elucidation of all potential confounders accounting for variability may not be possible. WIDER IMPLICATIONS OF THE FINDINGS: Our findings highlight the strong need for standardization and quality assurance in the industry. The decision not to transfer mosaic embryos may ultimately reduce the chance of success of a PGT-A cycle by limiting the pool of available embryos. Until we can be certain that mosaic diagnoses accurately reflect biological variability, reporting mosaicism warrants utmost caution. A prudent approach is imperative, as it may determine the difference between success or failure for some patients. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by the Torres Quevedo Grant, awarded to M.P. (PTQ2019-010494) by the Spanish State Research Agency, Ministry of Science and Innovation, Spain. M.P., L.B., A.R.L., A.L.R.d.C.L., N.P.P., M.P., D.S., F.A., A.P., B.M., L.D., F.V.M., D.S., M.R., E.P.d.l.B., A.R., and R.V. have no competing interests to declare. B.L., R.M., and J.A.O. are full time employees of IB Biotech, the genetics company of the Instituto Bernabeu group, which performs preimplantation genetic testing. M.G. is a full time employee of Novagen, the genetics company of Cegyr, which performs preimplantation genetic testing. TRIAL REGISTRATION NUMBER: N/A.


Asunto(s)
Mosaicismo , Diagnóstico Preimplantación , Femenino , Humanos , Embarazo , Aneuploidia , Sesgo Implícito , Blastocisto/patología , Estudios de Cohortes , Pruebas Genéticas/métodos , Diagnóstico Preimplantación/métodos , Estudios Retrospectivos , Adulto
2.
Reprod Biomed Online ; 38(4): 497-507, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30745236

RESUMEN

RESEARCH QUESTION: Can oocyte-related activation deficiencies be evaluated in oocytes that failed to fertilize after intracytoplasmic sperm injection (ICSI) combined with assisted oocyte activation (AOA)? DESIGN: Evaluation of the spindle-chromosome complexes and intracellular distribution of inositol trisphosphate type 1 receptors (IP3R1) in in-vitro matured (IVM) and failed-to-fertilize oocytes from patients undergoing AOA. Assessment of the oocyte-related Ca2+ releasing capacity in response to Ca2+ ionophores and sperm microinjection in oocytes that failed to fertilize after ICSI or ICSI-AOA. RESULTS: IVM oocytes from patients undergoing conventional ICSI (control) and ICSI-AOA (study group) revealed a similar normalcy of spindle-chromosome complexes and distribution patterns of IP3R1. Failed-to-fertilize oocytes from both groups showed significant differences in proportion of normal or abnormal spindle-chromosome complex conformations. However, migration of IP3R1 was identified in a higher proportion of failed-to-fertilize oocytes after ICSI-AOA than after conventional ICSI. It was further observed that oocytes which failed to fertilize, either after ICSI or ICSI-AOA, mostly retain their capacity to respond to stimuli such as exposure to Ca2+ ionophores or to sperm microinjection. CONCLUSIONS: Evaluation of spindle-chromosome normalcy and distribution of IP3R1 does not help identify the presence of Ca2+ releasing deficiencies in these oocytes. However, oocyte Ca2+ analysis adds value in identifying Ca2+ releasing incapacity of oocytes that failed to fertilize after ICSI or ICSI-AOA. Some patients experiencing fertilization failure after ICSI-AOA present with a suspected activation deficiency downstream of the Ca2+ machinery, which cannot be overcome by ICSI-AOA based on the use of Ca2+ ionophores.


Asunto(s)
Calcio/metabolismo , Fertilización , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Oocitos/metabolismo , Inyecciones de Esperma Intracitoplasmáticas , Ionóforos de Calcio/farmacología , Señalización del Calcio , Femenino , Humanos , Infertilidad/terapia , Masculino , Oocitos/citología , Embarazo , Índice de Embarazo , Espermatozoides , Resultado del Tratamiento
3.
Reprod Biomed Online ; 38(3): 442-454, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30612956

RESUMEN

RESEARCH QUESTION: Are there proteomic differences between endometrial stromal cells of repeated implantation failure (RIF), recurrent pregnancy loss (RPL) and normal fertile women, and is there differential protein expression upon decidualization? DESIGN: This exploratory study investigated the proteome of in-vitro cultured endometrial stromal cells of women with RIF (n = 4), women with RPL (n = 3) and normal fertile women (n = 4), comparing day 0 with 5 days of decidualization. Total proteins extracted from cell lysates were analysed by high-definition mass spectrometry. Data analysis was performed using significance analysis of microarray in R (P < 0.05; false discovery rate [FDR] 10%). RESULTS: In the RIF group, ANXA6, PSMC5 and FSCN1 were up-regulated (1.9-fold, 2.5-fold and 1.9-fold, respectively), whereas PBXIP1 was down-regulated (7.7-fold) upon decidualization. In the RPL group, RPS25 and ACADVL were down-regulated (1.9-fold and 2.4-fold, respectively; FDR 10%) between the non-decidualized and the decidualized samples. In the normal fertile group VIM and RPL23A were down-regulated (1.9-fold and 2.4-fold, respectively). Comparing ratios of expression of decidualized over non-decidualized samples in the different groups revealed six differentially expressed proteins: DUX4L2, CNPY4, PDE7A, CTSK, PCBP2 and PSMD4. Comparison of RPL versus normal fertile in the decidualized condition revealed serotransferrin to be differentially expressed. The changes in expression levels for serotransferrin, ANX6, ACDVL and VIM were confirmed by western blot. CONCLUSIONS: Results show a varying response of endometrial stromal cells in distinct clinical groups (RIF, RPL and normal fertile) upon in-vitro decidualization. Serotransferrin could serve as a marker for the aberrant decidualization process in RPL.


Asunto(s)
Aborto Habitual/metabolismo , Implantación del Embrión/fisiología , Endometrio/metabolismo , Infertilidad Femenina/metabolismo , Células del Estroma/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Acil-CoA Deshidrogenasa de Cadena Larga/metabolismo , Adulto , Anexina A6/metabolismo , Proteínas Portadoras/metabolismo , Femenino , Fertilidad/fisiología , Humanos , Proteínas de Microfilamentos/metabolismo , Embarazo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteoma , Proteómica , Proteínas Ribosómicas/metabolismo , Transferrina/metabolismo , Vimentina/metabolismo
4.
Hum Reprod Update ; 26(3): 313-334, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32141501

RESUMEN

BACKGROUND: Trophectoderm (TE) biopsy and next generation sequencing (NGS) are currently the preferred techniques for preimplantation genetic testing for aneuploidies (PGT-A). Although this approach delivered important improvements over previous testing strategies, increased sensitivity has also prompted a rise in diagnoses of uncertain clinical significance. This includes reports of chromosomal mosaicism, suggesting the presence of karyotypically distinct cells within a single TE biopsy. Given that PGT-A relies on the chromosomal constitution of the biopsied cells being representative of the entire embryo, the prevalence and clinical implications of blastocyst mosaicism continue to generate considerable controversy. OBJECTIVE AND RATIONALE: The objective of this review was to evaluate existing scientific evidence regarding the prevalence and impact of chromosomal mosaicism in human blastocysts. We discuss insights from a biological, technical and clinical perspective to examine the implications of this diagnostic dilemma for PGT-A. SEARCH METHODS: The PubMed and Google Scholar databases were used to search peer-reviewed publications using the following terms: 'chromosomal mosaicism', 'human', 'embryo', 'blastocyst', 'implantation', 'next generation sequencing' and 'clinical management' in combination with other keywords related to the subject area. Relevant articles in the English language, published until October 2019 were critically discussed. OUTCOMES: Chromosomal mosaicism predominately results from errors in mitosis following fertilization. Although it appears to be less pervasive at later developmental stages, establishing the true prevalence of mosaicism in human blastocysts remains exceedingly challenging. In a clinical context, blastocyst mosaicism can only be reported based on a single TE biopsy and has been ascribed to 2-13% of embryos tested using NGS. Conversely, data from NGS studies disaggregating whole embryos suggests that mosaicism may be present in up to ~50% of blastocysts. However, differences in testing and reporting strategies, analysis platforms and the number of cells sampled inherently overshadow current data, while added uncertainties emanate from technical artefacts. Moreover, laboratory factors and aspects of in vitro culture generate further variability. Outcome data following the transfer of blastocysts diagnosed as mosaic remain limited. Current studies suggest that the transfer of putative mosaic embryos may lead to healthy live births, but also results in significantly reduced ongoing pregnancy rates compared to the transfer of euploid blastocysts. Observations that a subset of mosaic blastocysts has the capacity to develop normally have sparked discussions regarding the ability of embryos to self-correct. However, there is currently no direct evidence to support this assumption. Nevertheless, the exclusion of mosaic blastocysts results in fewer embryos available for transfer, which may inevitably compromise treatment outcomes. WIDER IMPLICATIONS: Chromosomal mosaicism in human blastocysts remains a perpetual diagnostic and clinical dilemma in the context of PGT-A. This review offers an important scientific resource, informing about the challenges, risks and value of diagnosing mosaicism. Elucidating these uncertainties will ultimately pave the way towards improved clinical and patient management.


Asunto(s)
Aneuploidia , Blastocisto/citología , Pruebas Genéticas/métodos , Mosaicismo/embriología , Diagnóstico Preimplantación/métodos , Diagnóstico Prenatal/métodos , Biopsia/métodos , Implantación del Embrión , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Cariotipificación , Embarazo , Índice de Embarazo
5.
Fertil Steril ; 112(2): 266-274, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31133387

RESUMEN

OBJECTIVE: To investigate the extent to which assisted oocyte activation (AOA) improves clinical outcomes in patients diagnosed with oocyte activation deficiencies (OADs). DESIGN: Retrospective cohort study comparing AOA cycles and previous intracytoplasmic sperm injection (ICSI) cycles in couples experiencing low or total failed fertilization after ICSI. Importantly, the sperm-related oocyte-activating capacity was examined in all patients before AOA with the use of the mouse oocyte activation test (MOAT). SETTING: Infertility center at a university hospital. PATIENT(S): A total of 122 couples with a history of low or total failed fertilization after ICSI. INTERVENTION(S): ICSI, MOAT, AOA, and embryo transfer. MAIN OUTCOME MEASURE(S): Fertilization, pregnancy, and live birth rates. RESULT(S): MOAT revealed 19 patients with a sperm-related OAD (MOAT group 1), 56 patients with a diminished sperm-related oocyte-activating capacity (MOAT group 2), and 47 patients with a suspected oocyte-related OAD (MOAT group 3). AOA (191 cycles) significantly improved fertilization, pregnancy, and live birth rates in all MOAT groups compared with previous ICSI attempts (243 cycles). Fertilization rates after AOA were significantly different among MOAT groups 1 (70.1%), 2 (63.0%), and 3 (57.3%). Between MOAT group 1 and 3, significant differences in pregnancy (49.0% vs. 29.4%) and live birth (41.2% vs. 22.1%) rates were observed. In total, 225 embryo transfers resulted in 60 healthy live births following AOA. CONCLUSION(S): Patients undergoing diagnostic testing before AOA show a significant improvement in clinical outcomes compared with previous cycles. Our findings highlight that AOA should be reserved for patients with clear OADs.


Asunto(s)
Infertilidad/epidemiología , Infertilidad/terapia , Oocitos/patología , Resultado del Embarazo/epidemiología , Inyecciones de Esperma Intracitoplasmáticas , Interacciones Espermatozoide-Óvulo/fisiología , Adulto , Animales , Técnicas de Diagnóstico Obstétrico y Ginecológico , Transferencia de Embrión , Femenino , Fertilización In Vitro/métodos , Humanos , Técnicas de Maduración In Vitro de los Oocitos/métodos , Técnicas de Maduración In Vitro de los Oocitos/normas , Técnicas de Maduración In Vitro de los Oocitos/estadística & datos numéricos , Infertilidad/diagnóstico , Masculino , Ratones , Oocitos/fisiología , Embarazo , Estudios Retrospectivos , Inyecciones de Esperma Intracitoplasmáticas/estadística & datos numéricos , Insuficiencia del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA