Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(17): e2315379121, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38625946

RESUMEN

A key feature of excitatory synapses is the existence of subsynaptic protein nanoclusters (NCs) whose precise alignment across the cleft in a transsynaptic nanocolumn influences the strength of synaptic transmission. However, whether nanocolumn properties vary between excitatory synapses functioning in different cellular contexts is unknown. We used a combination of confocal and DNA-PAINT super-resolution microscopy to directly compare the organization of shared scaffold proteins at two important excitatory synapses-those forming onto excitatory principal neurons (Ex→Ex synapses) and those forming onto parvalbumin-expressing interneurons (Ex→PV synapses). As in Ex→Ex synapses, we find that in Ex→PV synapses, presynaptic Munc13-1 and postsynaptic PSD-95 both form NCs that demonstrate alignment, underscoring synaptic nanostructure and the transsynaptic nanocolumn as conserved organizational principles of excitatory synapses. Despite the general conservation of these features, we observed specific differences in the characteristics of pre- and postsynaptic Ex→PV nanostructure. Ex→PV synapses contained larger PSDs with fewer PSD-95 NCs when accounting for size than Ex→Ex synapses. Furthermore, the PSD-95 NCs were larger and denser. The identity of the postsynaptic cell was also represented in Munc13-1 organization, as Ex→PV synapses hosted larger Munc13-1 puncta that contained less dense but larger and more numerous Munc13-1 NCs. Moreover, we measured the spatial variability of transsynaptic alignment in these synapse types, revealing protein alignment in Ex→PV synapses over a distinct range of distances compared to Ex→Ex synapses. We conclude that while general principles of nanostructure and alignment are shared, cell-specific elements of nanodomain organization likely contribute to functional diversity of excitatory synapses.


Asunto(s)
Neuronas , Sinapsis , Neuronas/metabolismo , Sinapsis/metabolismo , Interneuronas/fisiología , Transmisión Sináptica , Homólogo 4 de la Proteína Discs Large/metabolismo
2.
J Neurosci ; 44(26)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38777601

RESUMEN

MAGUK scaffold proteins play a central role in maintaining and modulating synaptic signaling, providing a framework to retain and position receptors, signaling molecules, and other synaptic components. In particular, the MAGUKs SAP102 and PSD-95 are essential for synaptic function at distinct developmental timepoints and perform both overlapping and unique roles. While their similar structures allow for common binding partners, SAP102 is expressed earlier in synapse development and is required for synaptogenesis, whereas PSD-95 expression peaks later and is associated with synapse maturation. PSD-95 and other key synaptic proteins organize into subsynaptic nanodomains that have a significant impact on synaptic transmission, but the nanoscale organization of SAP102 is unknown. How SAP102 is organized within the synapse, and how it relates spatially to PSD-95 on a nanometer scale, could underlie its unique functions and impact how SAP102 scaffolds synaptic proteins. Here we used DNA-PAINT super-resolution microscopy to measure SAP102 nano-organization and its spatial relationship to PSD-95 at individual synapses in mixed-sex rat cultured neurons. We found that like PSD-95, SAP102 accumulates in high-density subsynaptic nanoclusters (NCs). However, SAP102 NCs were smaller and denser than PSD-95 NCs across development. Additionally, only a subset of SAP102 NCs co-organized with PSD-95, revealing MAGUK nanodomains within individual synapses containing either one or both proteins. These MAGUK nanodomain types had distinct NC properties and were differentially enriched with the presynaptic release protein Munc13-1. This organization into both shared and distinct subsynaptic nanodomains may underlie the ability of SAP102 and PSD-95 to perform both common and unique synaptic functions.


Asunto(s)
Homólogo 4 de la Proteína Discs Large , Sinapsis , Animales , Homólogo 4 de la Proteína Discs Large/metabolismo , Sinapsis/metabolismo , Ratas , Femenino , Proteínas de la Membrana/metabolismo , Ratas Sprague-Dawley , Dominios Proteicos , Masculino , Neuronas/metabolismo , Células Cultivadas , Hipocampo/metabolismo , Hipocampo/citología , Neuropéptidos
3.
bioRxiv ; 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38260705

RESUMEN

Nanoscale protein organization within the active zone (AZ) and post-synaptic density (PSD) influences synaptic transmission. Nanoclusters of presynaptic Munc13-1 are associated with readily releasable pool size and neurotransmitter vesicle priming, while postsynaptic PSD-95 nanoclusters coordinate glutamate receptors across from release sites to control their opening probability. Nanocluster number, size, and protein density vary between synapse types and with development and plasticity, supporting a wide range of functional states at the synapse. Whether or how the receptors themselves control this critical architecture remains unclear. One prominent PSD molecular complex is the NMDA receptor (NMDAR). NMDARs coordinate several modes of signaling within synapses, giving them the potential to influence synaptic organization through direct protein interactions or through signaling. We found that loss of NMDARs results in larger synapses that contain smaller, denser, and more numerous PSD-95 nanoclusters. Intriguingly, NMDAR loss also generates retrograde reorganization of the active zone, resulting in denser, more numerous Munc13-1 nanoclusters, more of which are aligned with PSD-95 nanoclusters. Together, these changes to synaptic nanostructure predict stronger AMPA receptor-mediated transmission in the absence of NMDARs. Notably, while prolonged antagonism of NMDAR activity increases Munc13-1 density within nanoclusters, it does not fully recapitulate these trans-synaptic effects. Thus, our results confirm that NMDARs play an important role in maintaining pre- and postsynaptic nanostructure and suggest that both decreased NMDAR expression and suppressed NMDAR activity may exert distinct effects on synaptic function, yet through unique architectural mechanisms.

4.
bioRxiv ; 2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37732271

RESUMEN

A key feature of excitatory synapses is the existence of subsynaptic protein nanoclusters whose precise alignment across the cleft in a trans-synaptic nanocolumn influences the strength of synaptic transmission. However, whether nanocolumn properties vary between excitatory synapses functioning in different cellular contexts is unknown. We used a combination of confocal and DNA-PAINT super-resolution microscopy to directly compare the organization of shared scaffold proteins at two important excitatory synapses - those forming onto excitatory principal neurons (Ex→Ex synapses) and those forming onto parvalbumin-expressing interneurons (Ex→PV synapses). As in Ex→Ex synapses, we find that in Ex→PV synapses presynaptic Munc13-1 and postsynaptic PSD-95 both form nanoclusters that demonstrate alignment, underscoring synaptic nanostructure and the trans-synaptic nanocolumn as conserved organizational principles of excitatory synapses. Despite the general conservation of these features, we observed specific differences in the characteristics of pre- and postsynaptic Ex→PV nanostructure. Ex→PV synapses contained larger PSDs with fewer PSD-95 NCs when accounting for size than Ex→Ex synapses. Furthermore, the PSD-95 NCs were larger and denser. The identity of the postsynaptic cell also had a retrograde impact on Munc13-1 organization, as Ex→PV synapses hosted larger Munc13-1 puncta that contained less dense but larger and more numerous Munc13-1 NCs. Moreover, we measured the spatial variability of transsynaptic alignment in these synapse types, revealing protein alignment in Ex→PV synapses over a distinct range of distances compared to Ex→Ex synapses. We conclude that while general principles of nanostructure and alignment are shared, cell-specific elements of nanodomain organization likely contribute to functional diversity of excitatory synapses. Understanding the rules of synapse nanodomain assembly, which themselves are cell-type specific, will be essential for illuminating brain network dynamics.

5.
bioRxiv ; 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37745494

RESUMEN

The MAGUK family of scaffold proteins plays a central role in maintaining and modulating synaptic signaling, providing a framework to retain and position receptors, signaling molecules, and other synaptic components. Of these scaffold proteins, SAP102 and PSD-95 are essential for synaptic function at distinct developmental timepoints and perform overlapping as well as unique roles. While their similar structures allow for common binding partners, SAP102 is expressed earlier in synapse development and is required for synaptogenesis, whereas PSD-95 expression peaks later in development and is associated with synapse maturation. PSD-95 and other key synaptic proteins organize into subsynaptic nanodomains that have a significant impact on synaptic transmission, but the nanoscale organization of SAP102 is unknown. How SAP102 is organized within the synapse, and how it relates spatially to PSD-95 on a nanometer scale, could impact how SAP102 clusters synaptic proteins and underlie its ability to perform its unique functions. Here we used DNA-PAINT super-resolution microscopy to measure SAP102 nano-organization and its spatial relationship to PSD-95 at individual synapses. We found that like PSD-95, SAP102 accumulates in high-density subsynaptic nanoclusters. However, SAP102 nanoclusters were smaller and denser than PSD-95 nanoclusters across development. Additionally, only a subset of SAP102 nanoclusters co-organized with PSD-95, revealing that within individual synapses there are nanodomains that contain either one or both proteins. This organization into both shared and distinct subsynaptic nanodomains may underlie the ability of SAP102 and PSD-95 to perform both common and unique synaptic functions.

6.
bioRxiv ; 2023 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-38187545

RESUMEN

Tight coordination of the spatial relationships between protein complexes is required for cellular function. In neuronal synapses, many proteins responsible for neurotransmission organize into subsynaptic nanoclusters whose trans-cellular alignment modulates synaptic signal propagation. However, the spatial relationships between these proteins and NMDA receptors (NMDARs), which are required for learning and memory, remain undefined. Here, we mapped the relationship of key NMDAR subunits to reference proteins in the active zone and postsynaptic density using multiplexed super-resolution DNA-PAINT microscopy. GluN2A and GluN2B subunits formed nanoclusters with diverse configurations that, surprisingly, were not localized near presynaptic vesicle release sites marked by Munc13-1. However, a subset of presynaptic sites was configured to maintain NMDAR activation: these were internally denser, aligned with abundant PSD-95, and associated closely with specific NMDAR nanodomains. This work reveals a new principle regulating NMDAR signaling and suggests that synaptic functional architecture depends on assembly of multiprotein nanodomains whose interior construction is conditional on trans-cellular relationships.

7.
bioRxiv ; 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37961089

RESUMEN

Action potentials trigger neurotransmitter release with minimal delay. Active zones mediate this temporal precision by co-organizing primed vesicles with CaV2 Ca2+ channels. The presumed model is that scaffolding proteins directly tether primed vesicles to CaV2s. We find that CaV2 clustering and vesicle priming are executed by separate machineries. At hippocampal synapses, CaV2 nanoclusters are positioned at variable distances from those of the priming protein Munc13. The active zone organizer RIM anchors both proteins, but distinct interaction motifs independently execute these functions. In heterologous cells, Liprin-α and RIM from co-assemblies that are separate from CaV2-organizing complexes upon co-transfection. At synapses, Liprin-α1-4 knockout impairs vesicle priming, but not CaV2 clustering. The cell adhesion protein PTPσ recruits Liprin-α, RIM and Munc13 into priming complexes without co-clustering of CaV2s. We conclude that active zones consist of distinct complexes to organize CaV2s and vesicle priming, and Liprin-α and PTPσ specifically support priming site assembly.

8.
Cell Rep ; 22(1): 84-95, 2018 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-29298436

RESUMEN

Cognitive abilities, such as volitional attention, operate under top-down, executive frontal cortical control of hierarchically lower structures. The circuit mechanisms underlying this process are unresolved. The claustrum possesses interconnectivity with many cortical areas and, thus, is hypothesized to orchestrate the cortical mantle for top-down control. Whether the claustrum receives top-down input and how this input may be processed by the claustrum have yet to be formally tested, however. We reveal that a rich anterior cingulate cortex (ACC) input to the claustrum encodes a preparatory top-down information signal on a five-choice response assay that is necessary for optimal task performance. We further show that ACC input monosynaptically targets claustrum inhibitory interneurons and spiny glutamatergic projection neurons, the latter of which amplify ACC input in a manner that is powerfully constrained by claustrum inhibitory microcircuitry. These results demonstrate ACC input to the claustrum is critical for top-down control guiding action.


Asunto(s)
Ganglios Basales , Giro del Cíngulo , Interneuronas , Animales , Ganglios Basales/citología , Ganglios Basales/fisiología , Giro del Cíngulo/citología , Giro del Cíngulo/fisiología , Interneuronas/citología , Interneuronas/fisiología , Ratones , Ratones Transgénicos
9.
Neuron ; 100(4): 860-875.e7, 2018 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-30318410

RESUMEN

Synaptic transmission is bioenergetically demanding, and the diverse processes underlying synaptic plasticity elevate these demands. Therefore, mitochondrial functions, including ATP synthesis and Ca2+ handling, are likely essential for plasticity. Although axonal mitochondria have been extensively analyzed, LTP is predominantly induced postsynaptically, where mitochondria are understudied. Additionally, though mitochondrial fission is essential for their function, signaling pathways that regulate fission in neurons remain poorly understood. We found that NMDAR-dependent LTP induction prompted a rapid burst of dendritic mitochondrial fission and elevations of mitochondrial matrix Ca2+. The fission burst was triggered by cytosolic Ca2+ elevation and required CaMKII, actin, and Drp1, as well as dynamin 2. Preventing fission impaired mitochondrial matrix Ca2+ elevations, structural LTP in cultured neurons, and electrophysiological LTP in hippocampal slices. These data illustrate a novel pathway whereby synaptic activity controls mitochondrial fission and show that dynamic control of fission regulates plasticity induction, perhaps by modulating mitochondrial Ca2+ handling.


Asunto(s)
Dendritas/fisiología , Potenciación a Largo Plazo/fisiología , Dinámicas Mitocondriales/fisiología , Animales , Femenino , Hipocampo/citología , Hipocampo/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Técnicas de Cultivo de Órganos , Ratas , Ratas Sprague-Dawley , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA