Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Malar J ; 22(1): 269, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37705004

RESUMEN

BACKGROUND: Widespread artemisinin resistance in Africa could be catastrophic when drawing parallels with the failure of chloroquine in the 1970s and 1980s. This article explores the role of anti-malarial market characteristics in the emergence and spread of arteminisin resistance in African countries, drawing on perspectives from Burkina Faso. METHODS: Data were collected through in-depth interviews and focus group discussions. A representative sample of national policy makers, regulators, public and private sector wholesalers, retailers, clinicians, nurses, and community members were purposively sampled. Additional information was also sought via review of policy publications and grey literature on anti-malarial policies and deployment practices in Burkina Faso. RESULTS: Thirty seven in-depth interviews and 6 focus group discussions were conducted. The study reveals that the current operational mode of anti-malarial drug markets in Burkina Faso promotes arteminisin resistance emergence and spread. The factors are mainly related to the artemisinin-based combination therapy (ACT) supply chain, to ACT quality, ACT prescription monitoring and to ACT access and misuse by patients. CONCLUSION: Study findings highlight the urgent requirement to reform current characteristics of the anti-malarial drug market in order to delay the emergence and spread of artemisinin resistance in Burkina Faso. Four recommendations for public policy emerged during data analysis: (1) Address the suboptimal prescription of anti-malarial drugs, (2) Apply laws that prohibit the sale of anti-malarials without prescription, (3) Restrict the availability of street drugs, (4) Sensitize the population on the value of compliance regarding correct acquisition and intake of anti-malarials. Funding systems for anti-malarial drugs in terms of availability and accessibility must also be stabilized.


Asunto(s)
Antimaláricos , Artemisininas , Humanos , Antimaláricos/farmacología , Burkina Faso , Cloroquina , Personal Administrativo , Artemisininas/farmacología
2.
Malar J ; 22(1): 185, 2023 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-37330469

RESUMEN

BACKGROUND: Recent reports of artemisinin partial resistance from Rwanda and Uganda are worrisome and suggest a future policy change to adopt new anti-malarials. This is a case study on the evolution, adoption, and implementation of new anti-malarial treatment policies in Nigeria. The main objective is to provide perspectives to enhance the future uptake of new anti-malarials, with an emphasis on stakeholder engagement strategies. METHODS: This case study is based on an analysis of policy documents and stakeholders' perspectives drawn from an empirical study conducted in Nigeria, 2019-2020. A mixed methods approach was adopted, including historical accounts, review of programme and policy documents, and 33 qualitative in-depth interviews and 6 focus group discussions. RESULTS: Based on policy documents reviewed, the adoption of artemisinin-based combination therapy (ACT) in Nigeria was swift due to political will, funding and support from global developmental partners. However, the implementation of ACT was met with resistance from suppliers, distributors, prescribers, and end-users, attributed to market dynamics, costs and inadequate stakeholder engagement. Deployment of ACT in Nigeria witnessed increased developmental partner support, robust data generation, ACT case-management strengthening and evidence on anti-malarial use in severe malaria and antenatal care management. A framework for effective stakeholder engagement for the future adoption of new anti-malarial treatment strategies was proposed. The framework covers the pathway from generating evidence on drug efficacy, safety and uptake; to making treatment accessible and affordable to end-users. It addresses which stakeholders to engage with and the content of engagement strategies with key stakeholders at different levels of the transition process. CONCLUSION: Early and staged engagement of stakeholders from global bodies to community level end-users is critical to the successful adoption and uptake of new anti-malarial treatment policies. A framework for these engagements was proposed as a contribution to enhancing the uptake of future anti-malarial strategies.


Asunto(s)
Antimaláricos , Artemisininas , Malaria , Embarazo , Femenino , Humanos , Antimaláricos/uso terapéutico , Nigeria , Participación de los Interesados , Malaria/tratamiento farmacológico , Malaria/prevención & control , Artemisininas/uso terapéutico
3.
J Infect Dis ; 226(2): 324-331, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-35703955

RESUMEN

BACKGROUND: Understanding the effect of immunity on Plasmodium falciparum clearance is essential for interpreting therapeutic efficacy studies designed to monitor emergence of artemisinin drug resistance. In low-transmission areas of Southeast Asia, where resistance has emerged, P. falciparum antibodies confound parasite clearance measures. However, variation in naturally acquired antibodies across Asian and sub-Saharan African epidemiological contexts and their impact on parasite clearance re yet to be quantified. METHODS: In an artemisinin therapeutic efficacy study, antibodies to 12 pre-erythrocytic and erythrocytic P. falciparum antigens were measured in 118 children with uncomplicated P. falciparum malaria in the Democratic Republic of Congo (DRC) and compared with responses in patients from Asian sites, described elsewhere. RESULTS: Parasite clearance half-life was shorter in DRC patients (median, 2 hours) compared with most Asian sites (median, 2-7 hours), but P. falciparum antibody levels and seroprevalences were similar. There was no evidence for an association between antibody seropositivity and parasite clearance half-life (mean difference between seronegative and seropositive, -0.14 to +0.40 hour) in DRC patients. CONCLUSIONS: In DRC, where artemisinin remains highly effective, the substantially shorter parasite clearance time compared with Asia was not explained by differences in the P. falciparum antibody responses studied.


Asunto(s)
Antimaláricos , Artemisininas , Malaria Falciparum , Parásitos , Animales , Formación de Anticuerpos , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Artemisininas/farmacología , Artemisininas/uso terapéutico , Niño , República Democrática del Congo/epidemiología , Resistencia a Medicamentos , Humanos , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/epidemiología , Plasmodium falciparum
4.
Malar J ; 21(1): 207, 2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35768869

RESUMEN

BACKGROUND: Independent emergence and spread of artemisinin-resistant Plasmodium falciparum malaria have recently been confirmed in Africa, with molecular markers associated with artemisinin resistance increasingly detected. Surveillance to promptly detect and effectively respond to anti-malarial resistance is generally suboptimal in Africa, especially in low transmission settings where therapeutic efficacy studies are often not feasible due to recruitment challenges. However, these communities may be at higher risk of anti-malarial resistance. METHODS: From March 2018 to February 2020, a sequential mixed-methods study was conducted to evaluate the feasibility of the near-real-time linkage of individual patient anti-malarial resistance profiles with their case notifications and treatment response reports, and map these to fine scales in Nkomazi sub-district, Mpumalanga, a pre-elimination area in South Africa. RESULTS: Plasmodium falciparum molecular marker resistance profiles were linked to 55.1% (2636/4787) of notified malaria cases, 85% (2240/2636) of which were mapped to healthcare facility, ward and locality levels. Over time, linkage of individual malaria case demographic and molecular data increased to 75.1%. No artemisinin resistant validated/associated  Kelch-13 mutations were detected in the 2385 PCR positive samples. Almost all 2812 samples assessed for lumefantrine susceptibility carried the wildtype mdr86ASN and crt76LYS alleles, potentially associated with decreased lumefantrine susceptibility. CONCLUSION: Routine near-real-time mapping of molecular markers associated with anti-malarial drug resistance on a fine spatial scale provides a rapid and efficient early warning system for emerging resistance. The lessons learnt here could inform scale-up to provincial, national and regional malaria elimination programmes, and may be relevant for other antimicrobial resistance surveillance.


Asunto(s)
Antimaláricos , Malaria Falciparum , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Resistencia a Medicamentos/genética , Humanos , Lumefantrina/farmacología , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/epidemiología , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Sudáfrica
5.
Malar J ; 21(1): 83, 2022 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-35279140

RESUMEN

BACKGROUND: Resistance to anti-malarials is a serious threat to the efforts to control and eliminate malaria. Surveillance based on simple field protocols with centralized testing to detect molecular markers associated with anti-malarial drug resistance can be used to identify locations where further investigations are needed. METHODS: Dried blood spots were collected from 398 patients (age range 5-59 years, 99% male) with Plasmodium falciparum infections detected using rapid diagnostic tests over two rounds of sample collection conducted in 2016 and 2017 in Komé, South-West Chad. Specimens were genotyped using amplicon sequencing or qPCR for validated markers of anti-malarial resistance including partner drugs used in artemisinin-based combination therapy (ACT). RESULTS: No mutations in the pfk13 gene known to be associated with artemisinin resistance were found but a high proportion of parasites carried other mutations, specifically K189T (190/349, 54.4%, 95%CI 49.0-59.8%). Of 331 specimens successfully genotyped for pfmdr1 and pfcrt, 52% (95%CI 46.4-57.5%) carried the NFD-K haplotype, known to be associated with reduced susceptibility to lumefantrine. Only 20 of 336 (6.0%, 95%CI 3.7-9.0%) had parasites with the pfmdr1-N86Y polymorphism associated with increased treatment failures with amodiaquine. Nearly all parasites carried at least one mutation in pfdhfr and/or pfdhps genes but 'sextuple' mutations in pfdhfr-pfdhps including pfdhps -A581G were rare (8/336 overall, 2.4%, 95%CI 1.2-4.6%). Only one specimen containing parasites with pfmdr1 gene amplification was detected. CONCLUSIONS: These results provide information on the likely high efficacy of artemisinin-based combinations commonly used in Chad, but suggest decreasing levels of sensitivity to lumefantrine and high levels of resistance to sulfadoxine-pyrimethamine used for seasonal malaria chemoprevention and intermittent preventive therapy in pregnancy. A majority of parasites had mutations in the pfk13 gene, none of which are known to be associated with artemisinin resistance. A therapeutic efficacy study needs to be conducted to confirm the efficacy of artemether-lumefantrine.


Asunto(s)
Antimaláricos , Plasmodium falciparum , Adolescente , Adulto , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Arteméter , Combinación Arteméter y Lumefantrina , Chad , Niño , Preescolar , Resistencia a Medicamentos/genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Plasmodium falciparum/genética , Polimorfismo Genético , Proteínas Protozoarias/genética , Adulto Joven
6.
Malar J ; 21(1): 122, 2022 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35413904

RESUMEN

BACKGROUND: Microscopic examination of Giemsa-stained blood films remains the reference standard for malaria parasite detection and quantification, but is undermined by difficulties in ensuring high-quality manual reading and inter-reader reliability. Automated parasite detection and quantification may address this issue. METHODS: A multi-centre, observational study was conducted during 2018 and 2019 at 11 sites to assess the performance of the EasyScan Go, a microscopy device employing machine-learning-based image analysis. Sensitivity, specificity, accuracy of species detection and parasite density estimation were assessed with expert microscopy as the reference. Intra- and inter-device reliability of the device was also evaluated by comparing results from repeat reads on the same and two different devices. This study has been reported in accordance with the Standards for Reporting Diagnostic accuracy studies (STARD) checklist. RESULTS: In total, 2250 Giemsa-stained blood films were prepared and read independently by expert microscopists and the EasyScan Go device. The diagnostic sensitivity of EasyScan Go was 91.1% (95% CI 88.9-92.7), and specificity 75.6% (95% CI 73.1-78.0). With good quality slides sensitivity was similar (89.1%, 95%CI 86.2-91.5), but specificity increased to 85.1% (95%CI 82.6-87.4). Sensitivity increased with parasitaemia rising from 57% at < 200 parasite/µL, to ≥ 90% at > 200-200,000 parasite/µL. Species were identified accurately in 93% of Plasmodium falciparum samples (kappa = 0.76, 95% CI 0.69-0.83), and in 92% of Plasmodium vivax samples (kappa = 0.73, 95% CI 0.66-0.80). Parasite density estimates by the EasyScan Go were within ± 25% of the microscopic reference counts in 23% of slides. CONCLUSIONS: The performance of the EasyScan Go in parasite detection and species identification accuracy fulfil WHO-TDR Research Malaria Microscopy competence level 2 criteria. In terms of parasite quantification and false positive rate, it meets the level 4 WHO-TDR Research Malaria Microscopy criteria. All performance parameters were significantly affected by slide quality. Further software improvement is required to improve sensitivity at low parasitaemia and parasite density estimations. Trial registration ClinicalTrials.gov number NCT03512678.


Asunto(s)
Malaria Falciparum , Malaria , Pruebas Diagnósticas de Rutina/métodos , Humanos , Aprendizaje Automático , Malaria/diagnóstico , Malaria/parasitología , Malaria Falciparum/parasitología , Microscopía/métodos , Parasitemia/diagnóstico , Parasitemia/parasitología , Plasmodium falciparum , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
7.
Antimicrob Agents Chemother ; 65(12): e0112121, 2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34516247

RESUMEN

Increasing resistance in Plasmodium falciparum to artemisinins and their artemisinin combination therapy (ACT) partner drugs jeopardizes effective antimalarial treatment. Resistance is worst in the Greater Mekong subregion. Monitoring genetic markers of resistance can help to guide antimalarial therapy. Markers of resistance to artemisinins (PfKelch mutations), mefloquine (amplification of P. falciparum multidrug resistance-1 [PfMDR1]), and piperaquine (PfPlasmepsin2/3 amplification and specific P. falciparum chloroquine resistance transporter [PfCRT] mutations) were assessed in 6,722 P. falciparum samples from Vietnam, Lao People's Democratic Republic (PDR), Cambodia, Thailand, and Myanmar between 2007 and 2019. Against a high background prevalence of PfKelch mutations, PfMDR1 and PfPlasmepsin2/3 amplification closely followed regional drug pressures over time. PfPlasmepsin2/3 amplification preceded piperaquine resistance-associated PfCRT mutations in Cambodia and reached a peak prevalence of 23/28 (82%) in 2015. This declined to 57/156 (38%) after first-line treatment was changed from dihydroartemisinin-piperaquine to artesunate-mefloquine (ASMQ) between 2014 and 2017. The frequency of PfMDR1 amplification increased from 0/293 (0%) between 2012 and 2017 to 12/156 (8%) in 2019. Amplification of PfMDR1 and PfPlasmepsin2/3 in the same parasites was extremely rare (4/6,722 [0.06%]) and was dispersed over time. The mechanisms conferring mefloquine and piperaquine resistance may be counterbalancing. This supports the development of ASMQ plus piperaquine as a triple artemisinin combination therapy.


Asunto(s)
Antimaláricos , Malaria Falciparum , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Resistencia a Medicamentos/genética , Resistencia a Múltiples Medicamentos/genética , Marcadores Genéticos , Humanos , Estudios Longitudinales , Malaria Falciparum/tratamiento farmacológico , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Proteínas Protozoarias/uso terapéutico
8.
Lancet ; 395(10233): 1345-1360, 2020 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-32171078

RESUMEN

BACKGROUND: Artemisinin and partner-drug resistance in Plasmodium falciparum are major threats to malaria control and elimination. Triple artemisinin-based combination therapies (TACTs), which combine existing co-formulated ACTs with a second partner drug that is slowly eliminated, might provide effective treatment and delay emergence of antimalarial drug resistance. METHODS: In this multicentre, open-label, randomised trial, we recruited patients with uncomplicated P falciparum malaria at 18 hospitals and health clinics in eight countries. Eligible patients were aged 2-65 years, with acute, uncomplicated P falciparum malaria alone or mixed with non-falciparum species, and a temperature of 37·5°C or higher, or a history of fever in the past 24 h. Patients were randomly assigned (1:1) to one of two treatments using block randomisation, depending on their location: in Thailand, Cambodia, Vietnam, and Myanmar patients were assigned to either dihydroartemisinin-piperaquine or dihydroartemisinin-piperaquine plus mefloquine; at three sites in Cambodia they were assigned to either artesunate-mefloquine or dihydroartemisinin-piperaquine plus mefloquine; and in Laos, Myanmar, Bangladesh, India, and the Democratic Republic of the Congo they were assigned to either artemether-lumefantrine or artemether-lumefantrine plus amodiaquine. All drugs were administered orally and doses varied by drug combination and site. Patients were followed-up weekly for 42 days. The primary endpoint was efficacy, defined by 42-day PCR-corrected adequate clinical and parasitological response. Primary analysis was by intention to treat. A detailed assessment of safety and tolerability of the study drugs was done in all patients randomly assigned to treatment. This study is registered at ClinicalTrials.gov, NCT02453308, and is complete. FINDINGS: Between Aug 7, 2015, and Feb 8, 2018, 1100 patients were given either dihydroartemisinin-piperaquine (183 [17%]), dihydroartemisinin-piperaquine plus mefloquine (269 [24%]), artesunate-mefloquine (73 [7%]), artemether-lumefantrine (289 [26%]), or artemether-lumefantrine plus amodiaquine (286 [26%]). The median age was 23 years (IQR 13 to 34) and 854 (78%) of 1100 patients were male. In Cambodia, Thailand, and Vietnam the 42-day PCR-corrected efficacy after dihydroartemisinin-piperaquine plus mefloquine was 98% (149 of 152; 95% CI 94 to 100) and after dihydroartemisinin-piperaquine was 48% (67 of 141; 95% CI 39 to 56; risk difference 51%, 95% CI 42 to 59; p<0·0001). Efficacy of dihydroartemisinin-piperaquine plus mefloquine in the three sites in Myanmar was 91% (42 of 46; 95% CI 79 to 98) versus 100% (42 of 42; 95% CI 92 to 100) after dihydroartemisinin-piperaquine (risk difference 9%, 95% CI 1 to 17; p=0·12). The 42-day PCR corrected efficacy of dihydroartemisinin-piperaquine plus mefloquine (96% [68 of 71; 95% CI 88 to 99]) was non-inferior to that of artesunate-mefloquine (95% [69 of 73; 95% CI 87 to 99]) in three sites in Cambodia (risk difference 1%; 95% CI -6 to 8; p=1·00). The overall 42-day PCR-corrected efficacy of artemether-lumefantrine plus amodiaquine (98% [281 of 286; 95% CI 97 to 99]) was similar to that of artemether-lumefantrine (97% [279 of 289; 95% CI 94 to 98]; risk difference 2%, 95% CI -1 to 4; p=0·30). Both TACTs were well tolerated, although early vomiting (within 1 h) was more frequent after dihydroartemisinin-piperaquine plus mefloquine (30 [3·8%] of 794) than after dihydroartemisinin-piperaquine (eight [1·5%] of 543; p=0·012). Vomiting after artemether-lumefantrine plus amodiaquine (22 [1·3%] of 1703) and artemether-lumefantrine (11 [0·6%] of 1721) was infrequent. Adding amodiaquine to artemether-lumefantrine extended the electrocardiogram corrected QT interval (mean increase at 52 h compared with baseline of 8·8 ms [SD 18·6] vs 0·9 ms [16·1]; p<0·01) but adding mefloquine to dihydroartemisinin-piperaquine did not (mean increase of 22·1 ms [SD 19·2] for dihydroartemisinin-piperaquine vs 20·8 ms [SD 17·8] for dihydroartemisinin-piperaquine plus mefloquine; p=0·50). INTERPRETATION: Dihydroartemisinin-piperaquine plus mefloquine and artemether-lumefantrine plus amodiaquine TACTs are efficacious, well tolerated, and safe treatments of uncomplicated P falciparum malaria, including in areas with artemisinin and ACT partner-drug resistance. FUNDING: UK Department for International Development, Wellcome Trust, Bill & Melinda Gates Foundation, UK Medical Research Council, and US National Institutes of Health.


Asunto(s)
Antimaláricos/uso terapéutico , Artemisininas/uso terapéutico , Malaria Falciparum/tratamiento farmacológico , Adolescente , Adulto , Amodiaquina/administración & dosificación , Amodiaquina/uso terapéutico , Antraquinonas/administración & dosificación , Antraquinonas/uso terapéutico , Antimaláricos/administración & dosificación , Combinación Arteméter y Lumefantrina/administración & dosificación , Combinación Arteméter y Lumefantrina/uso terapéutico , Artemisininas/administración & dosificación , Resistencia a Medicamentos , Quimioterapia Combinada , Femenino , Humanos , Masculino , Mefloquina/administración & dosificación , Mefloquina/uso terapéutico , Plasmodium falciparum/efectos de los fármacos , Reacción en Cadena de la Polimerasa , Quinolinas/administración & dosificación , Quinolinas/uso terapéutico , Resultado del Tratamiento , Adulto Joven
9.
Curr Opin Infect Dis ; 34(5): 432-439, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34267045

RESUMEN

PURPOSE OF REVIEW: Artemisinin-based combination therapies (ACTs) are globally the first-line treatment for uncomplicated falciparum malaria and new compounds will not be available within the next few years. Artemisinin-resistant Plasmodium falciparum emerged over a decade ago in the Greater Mekong Subregion (GMS) and, compounded by ACT partner drug resistance, has caused significant ACT treatment failure. This review provides an update on the epidemiology, and mechanisms of artemisinin resistance and approaches to counter multidrug-resistant falciparum malaria. RECENT FINDINGS: An aggressive malaria elimination programme in the GMS has helped prevent the spread of drug resistance to neighbouring countries. However, parasites carrying artemisinin resistance-associated mutations in the P. falciparum Kelch13 gene (pfk13) have now emerged independently in multiple locations elsewhere in Asia, Africa and South America. Notably, artemisinin-resistant infections with parasites carrying the pfk13 R561H mutation have emerged and spread in Rwanda. SUMMARY: Enhancing the geographic coverage of surveillance for resistance will be key to ensure prompt detection of emerging resistance in order to implement effective countermeasures without delay. Treatment strategies designed to prevent the emergence and spread of multidrug resistance must be considered, including deployment of triple drug combination therapies and multiple first-line therapies.


Asunto(s)
Antimaláricos , Artemisininas , Malaria Falciparum , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Artemisininas/uso terapéutico , Resistencia a Medicamentos/genética , Humanos , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/epidemiología , Malaria Falciparum/prevención & control , Mutación , Plasmodium falciparum/genética
10.
Malar J ; 20(1): 119, 2021 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-33639946

RESUMEN

Malaria remains a major cause of morbidity and mortality in Africa, particularly in children under five years of age. Availability of effective anti-malarial drug treatment is a cornerstone for malaria control and eventual malaria elimination. Artemisinin-based combination therapy (ACT) is worldwide the first-line treatment for uncomplicated falciparum malaria, but the ACT drugs are starting to fail in Southeast Asia because of drug resistance. Resistance to artemisinins and their partner drugs could spread from Southeast Asia to Africa or emerge locally, jeopardizing the progress made in malaria control with the increasing deployment of ACT in Africa. The development of triple artemisinin-based combination therapy (TACT) could contribute to mitigating the risks of artemisinin and partner drug resistance on the African continent. However, there are pertinent ethical and practical issues that ought to be taken into consideration. In this paper, the most important ethical tensions, some implementation practicalities and preliminary thoughts on addressing them are discussed. The discussion draws upon data from randomized clinical studies using TACT combined with ethical principles, published literature and lessons learned from the introduction of artemisinin-based combinations in African markets.


Asunto(s)
Antimaláricos/administración & dosificación , Artemisininas/administración & dosificación , Control de Enfermedades Transmisibles/organización & administración , Resistencia a Medicamentos , Malaria Falciparum/prevención & control , Práctica de Salud Pública/ética , África , Combinación de Medicamentos , Plasmodium falciparum/efectos de los fármacos
11.
Malar J ; 20(1): 110, 2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33632222

RESUMEN

BACKGROUND: Manual microscopy remains a widely-used tool for malaria diagnosis and clinical studies, but it has inconsistent quality in the field due to variability in training and field practices. Automated diagnostic systems based on machine learning hold promise to improve quality and reproducibility of field microscopy. The World Health Organization (WHO) has designed a 55-slide set (WHO 55) for their External Competence Assessment of Malaria Microscopists (ECAMM) programme, which can also serve as a valuable benchmark for automated systems. The performance of a fully-automated malaria diagnostic system, EasyScan GO, on a WHO 55 slide set was evaluated. METHODS: The WHO 55 slide set is designed to evaluate microscopist competence in three areas of malaria diagnosis using Giemsa-stained blood films, focused on crucial field needs: malaria parasite detection, malaria parasite species identification (ID), and malaria parasite quantitation. The EasyScan GO is a fully-automated system that combines scanning of Giemsa-stained blood films with assessment algorithms to deliver malaria diagnoses. This system was tested on a WHO 55 slide set. RESULTS: The EasyScan GO achieved 94.3 % detection accuracy, 82.9 % species ID accuracy, and 50 % quantitation accuracy, corresponding to WHO microscopy competence Levels 1, 2, and 1, respectively. This is, to our knowledge, the best performance of a fully-automated system on a WHO 55 set. CONCLUSIONS: EasyScan GO's expert ratings in detection and quantitation on the WHO 55 slide set point towards its potential value in drug efficacy use-cases, as well as in some case management situations with less stringent species ID needs. Improved runtime may enable use in general case management settings.


Asunto(s)
Pruebas Diagnósticas de Rutina/métodos , Malaria Falciparum/diagnóstico , Microscopía/instrumentación , Plasmodium falciparum/aislamiento & purificación , Automatización de Laboratorios , Pruebas Diagnósticas de Rutina/instrumentación , Humanos , Malaria/diagnóstico , Plasmodium/aislamiento & purificación , Reproducibilidad de los Resultados , Organización Mundial de la Salud
12.
Lancet ; 394(10202): 929-938, 2019 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-31327563

RESUMEN

BACKGROUND: Primaquine is the only widely used drug that prevents Plasmodium vivax malaria relapses, but adherence to the standard 14-day regimen is poor. We aimed to assess the efficacy of a shorter course (7 days) of primaquine for radical cure of vivax malaria. METHODS: We did a randomised, double-blind, placebo-controlled, non-inferiority trial in eight health-care clinics (two each in Afghanistan, Ethiopia, Indonesia, and Vietnam). Patients (aged ≥6 months) with normal glucose-6-phosphate dehydrogenase (G6PD) and presenting with uncomplicated vivax malaria were enrolled. Patients were given standard blood schizontocidal treatment and randomly assigned (2:2:1) to receive 7 days of supervised primaquine (1·0 mg/kg per day), 14 days of supervised primaquine (0·5 mg/kg per day), or placebo. The primary endpoint was the incidence rate of symptomatic P vivax parasitaemia during the 12-month follow-up period, assessed in the intention-to-treat population. A margin of 0·07 recurrences per person-year was used to establish non-inferiority of the 7-day regimen compared with the 14-day regimen. This trial is registered at ClinicalTrials.gov (NCT01814683). FINDINGS: Between July 20, 2014, and Nov 25, 2017, 2336 patients were enrolled. The incidence rate of symptomatic recurrent P vivax malaria was 0·18 (95% CI 0·15 to 0·21) recurrences per person-year for 935 patients in the 7-day primaquine group and 0·16 (0·13 to 0·18) for 937 patients in the 14-day primaquine group, a difference of 0·02 (-0·02 to 0·05, p=0·3405). The incidence rate for 464 patients in the placebo group was 0·96 (95% CI 0·83 to 1·08) recurrences per person-year. Potentially drug-related serious adverse events within 42 days of starting treatment were reported in nine (1·0%) of 935 patients in the 7-day group, one (0·1%) of 937 in the 14-day group and none of 464 in the control arm. Four of the serious adverse events were significant haemolysis (three in the 7-day group and one in the 14-day group). INTERPRETATION: In patients with normal G6PD, 7-day primaquine was well tolerated and non-inferior to 14-day primaquine. The short-course regimen might improve adherence and therefore the effectiveness of primaquine for radical cure of P vivax malaria. FUNDING: UK Department for International Development, UK Medical Research Council, UK National Institute for Health Research, and the Wellcome Trust through the Joint Global Health Trials Scheme (MR/K007424/1) and the Bill & Melinda Gates Foundation (OPP1054404).


Asunto(s)
Antimaláricos/administración & dosificación , Malaria Vivax/tratamiento farmacológico , Primaquina/administración & dosificación , Adolescente , Adulto , Antimaláricos/efectos adversos , Antimaláricos/uso terapéutico , Niño , Preescolar , Método Doble Ciego , Esquema de Medicación , Estudios de Equivalencia como Asunto , Femenino , Estudios de Seguimiento , Humanos , Malaria Vivax/parasitología , Masculino , Cumplimiento de la Medicación/estadística & datos numéricos , Parasitemia/tratamiento farmacológico , Parasitemia/parasitología , Plasmodium vivax/aislamiento & purificación , Primaquina/efectos adversos , Primaquina/uso terapéutico , Recurrencia , Prevención Secundaria/métodos , Adulto Joven
13.
Malar J ; 19(1): 363, 2020 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-33036628

RESUMEN

BACKGROUND: Sequencing technology advancements opened new opportunities to use transcriptomics for studying malaria pathology and epidemiology. Even though in recent years the study of whole parasite transcriptome proved to be essential in understanding parasite biology there is no compiled up-to-date reference protocol for the efficient generation of transcriptome data from growing number of samples. Here, a comprehensive methodology on how to preserve, extract, amplify, and sequence full-length mRNA transcripts from Plasmodium-infected blood samples is presented that can be fully streamlined for high-throughput studies. RESULTS: The utility of various commercially available RNA-preserving reagents in a range of storage conditions was evaluated. Similarly, several RNA extraction protocols were compared and the one most suitable method for the extraction of high-quality total RNA from low-parasitaemia and low-volume blood samples was established. Furthermore, the criteria needed to evaluate the quality and integrity of Plasmodium RNA in the presence of human RNA was updated. Optimization of SMART-seq2 amplification method to better suit AT-rich Plasmodium falciparum RNA samples allowed us to generate high-quality transcriptomes from as little as 10 ng of total RNA and a lower parasitaemia limit of 0.05%. Finally, a modified method for depletion of unwanted human haemoglobin transcripts using in vitro CRISPR-Cas9 treatment was designed, thus improving parasite transcriptome coverage in low parasitaemia samples. To prove the functionality of the pipeline for both laboratory and field strains, the highest  2-hour resolution RNA-seq transcriptome for P. falciparum 3D7 intraerythrocytic life cycle available to  date was generated, and the entire protocol was applied to create the largest transcriptome data from Southeast Asian field isolates. CONCLUSIONS: Overall, the presented methodology is an inclusive pipeline for generation of good quality transcriptomic data from a diverse range of Plasmodium-infected blood samples with varying parasitaemia and RNA inputs. The flexibility of this pipeline to be adapted to robotic handling will facilitate both small and large-scale future transcriptomic studies in the field of malaria.


Asunto(s)
Sangre/parasitología , Perfilación de la Expresión Génica/métodos , Plasmodium falciparum/genética , ARN Protozoario/análisis , Manejo de Especímenes/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Malaria Falciparum/fisiopatología , Plasmodium falciparum/aislamiento & purificación
15.
Malar J ; 19(1): 4, 2020 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-31900172

RESUMEN

BACKGROUND: Trials to assess the efficacy of the radical cure of Plasmodium vivax malaria with 8-aminoquinolines require that most post-treatment relapses are identified, but there is no consensus on the optimal duration of follow-up in either symptomatic or asymptomatic vivax malaria. The efficacy of a 14-day course of primaquine on the cumulative incidence of recurrent asymptomatic P. vivax infections detected by ultrasensitive quantitative PCR (uPCR) as a primary endpoint was assessed. METHODS: A randomized, placebo-controlled, single-blind trial was conducted in four villages of the Lao PDR during 2016-2018 nested in a larger project evaluating mass drug administrations (MDA) with dihydroartemisinin-piperaquine (DP) and a single low-dose primaquine to clear Plasmodium falciparum infections. In the nested sub-study, eligible participants with mono- or mixed P. vivax infections detected by uPCR were randomized to receive either 14 days of primaquine (0.5 mg/kg/day) or placebo during the last round of MDA (round 3) through directly observed therapy. Participants were checked monthly for 12 months for parasitaemia using uPCR. The primary outcome was cumulative incidence of participants with at least one recurrent episode of P. vivax infection. RESULTS: 20 G6PD-normal participants were randomized in each arm. 5 (29%) of 20 participants in the placebo arm experienced asymptomatic, recurrent P. vivax infections, resulting in a cumulative incidence at month 12 of 29%. None of the 20 participants in the intervention arm had recurrent infections (p = 0.047 Fisher's exact test). Participants with recurrent P. vivax infections were found to be parasitaemic for between one and five sequential monthly tests. The median time to recurrence of P. vivax parasitaemia was 178 days (range 62-243 days). CONCLUSIONS: A 14-day course of primaquine in addition to a DP-MDA was safe, well-tolerated, and prevented recurrent asymptomatic P. vivax infections. Long follow-up for up to 12 months is required to capture all recurrences following the treatment of asymptomatic vivax infection. To eliminate all malarias in settings where P. vivax is endemic, a full-course of an 8-aminoquinolines should be added to MDA to eliminate all malarias. Trial registration This study was registered with ClinicalTrials.gov under NCT02802813 on 16th June 2016. https://clinicaltrials.gov/ct2/show/NCT02802813.


Asunto(s)
Antimaláricos/uso terapéutico , Malaria Vivax/tratamiento farmacológico , Reacción en Cadena de la Polimerasa/métodos , Primaquina/uso terapéutico , Adolescente , Adulto , Artemisininas/uso terapéutico , Infecciones Asintomáticas , Femenino , Humanos , Laos , Masculino , Administración Masiva de Medicamentos , Plasmodium vivax , Primaquina/administración & dosificación , Quinolinas/uso terapéutico , Recurrencia , Factores de Tiempo , Adulto Joven
16.
Malar J ; 19(1): 324, 2020 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-32887612

RESUMEN

Microscopy performed on stained films of peripheral blood for detection, identification and quantification of malaria parasites is an essential reference standard for clinical trials of drugs, vaccines and diagnostic tests for malaria. The value of data from such research is greatly enhanced if this reference standard is consistent across time and geography. Adherence to common standards and practices is a prerequisite to achieve this. The rationale for proposed research standards and procedures for the preparation, staining and microscopic examination of blood films for malaria parasites is presented here with the aim of improving the consistency and reliability of malaria microscopy performed in such studies. These standards constitute the core of a quality management system for clinical research studies employing microscopy as a reference standard. They can be used as the basis for the design of training and proficiency testing programmes as well as for procedures and quality assurance of malaria microscopy in clinical research.


Asunto(s)
Malaria/parasitología , Microscopía/métodos , Pruebas Diagnósticas de Rutina/métodos , Pruebas Diagnósticas de Rutina/normas , Humanos , Ensayos de Aptitud de Laboratorios/métodos , Ensayos de Aptitud de Laboratorios/normas , Microscopía/normas , Control de Calidad , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Coloración y Etiquetado/métodos , Coloración y Etiquetado/normas
17.
Proc Natl Acad Sci U S A ; 114(13): 3515-3520, 2017 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-28289193

RESUMEN

Artemisinin-resistant falciparum malaria, defined by a slow-clearance phenotype and the presence of kelch13 mutants, has emerged in the Greater Mekong Subregion. Naturally acquired immunity to malaria clears parasites independent of antimalarial drugs. We hypothesized that between- and within-population variations in host immunity influence parasite clearance after artemisinin treatment and the interpretation of emerging artemisinin resistance. Antibodies specific to 12 Plasmodium falciparum sporozoite and blood-stage antigens were determined in 959 patients (from 11 sites in Southeast Asia) participating in a multinational cohort study assessing parasite clearance half-life (PCt1/2) after artesunate treatment and kelch13 mutations. Linear mixed-effects modeling of pooled individual patient data assessed the association between antibody responses and PCt1/2.P. falciparum antibodies were lowest in areas where the prevalence of kelch13 mutations and slow PCt1/2 were highest [Spearman ρ = -0.90 (95% confidence interval, -0.97, -0.65), and Spearman ρ = -0.94 (95% confidence interval, -0.98, -0.77), respectively]. P. falciparum antibodies were associated with faster PCt1/2 (mean difference in PCt1/2 according to seropositivity, -0.16 to -0.65 h, depending on antigen); antibodies have a greater effect on the clearance of kelch13 mutant compared with wild-type parasites (mean difference in PCt1/2 according to seropositivity, -0.22 to -0.61 h faster in kelch13 mutants compared with wild-type parasites). Naturally acquired immunity accelerates the clearance of artemisinin-resistant parasites in patients with falciparum malaria and may confound the current working definition of artemisinin resistance. Immunity may also play an important role in the emergence and transmission potential of artemisinin-resistant parasites.


Asunto(s)
Antimaláricos/administración & dosificación , Artemisininas/administración & dosificación , Malaria Falciparum/inmunología , Malaria Falciparum/parasitología , Plasmodium falciparum/efectos de los fármacos , Adolescente , Adulto , Anciano , Asia , Niño , Preescolar , Estudios de Cohortes , Resistencia a Medicamentos , Femenino , Humanos , Lactante , Malaria Falciparum/tratamiento farmacológico , Masculino , Persona de Mediana Edad , Fenotipo , Plasmodium falciparum/genética , Plasmodium falciparum/aislamiento & purificación , Plasmodium falciparum/fisiología , Adulto Joven
18.
J Infect Dis ; 219(9): 1483-1489, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30657916

RESUMEN

BACKGROUND: Artemisinin resistance in falciparum malaria is associated with kelch13 propeller mutations, reduced ring stage parasite killing, and, consequently, slow parasite clearance. We assessed how parasite age affects parasite clearance in artemisinin resistance. METHODS: Developmental stages of Plasmodium falciparum parasites on blood films performed at hospital admission and their kelch13 genotypes were assessed for 816 patients enrolled in a multinational clinical trial of artemisinin combination therapy. RESULTS: Early changes in parasitemia level (ie, 0-6 hours after admission) were determined mainly by modal stage of asexual parasite development, whereas the subsequent log-linear decline was determined mainly by kelch13 propeller mutations. Older circulating parasites on admission were associated with more-rapid parasite clearance, particularly in kelch13 mutant infections. The geometric mean parasite clearance half-life decreased by 11.6% (95% CI 3.4%-19.1%) in kelch13 wild-type infections and by 30% (95% CI 17.8%-40.4%) in kelch13 mutant infections as the mean age of circulating parasites rose from 3 to 21 hours. CONCLUSION: Following the start of antimalarial treatment, ongoing parasite sequestration and schizogony both affect initial changes in parasitemia. The greater dependency of parasite clearance half-life on parasite age in artemisinin resistant infections is consistent with ring stage resistance and consequent parasite clearance by sequestration. The stage of parasite development should be incorporated in individual assessments of artemisinin resistance.


Asunto(s)
Antimaláricos/uso terapéutico , Artemisininas/uso terapéutico , Estadios del Ciclo de Vida , Malaria Falciparum/tratamiento farmacológico , Plasmodium falciparum/crecimiento & desarrollo , Antimaláricos/farmacología , Artemisininas/farmacología , Resistencia a Medicamentos/genética , Quimioterapia Combinada , Genotipo , Humanos , Mutación , Parasitemia/tratamiento farmacológico , Parasitemia/parasitología , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Proteínas Protozoarias/genética
19.
J Infect Dis ; 220(7): 1178-1187, 2019 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-31075171

RESUMEN

BACKGROUND: Antibodies to the blood stages of malaria parasites enhance parasite clearance and antimalarial efficacy. The antibody subclass and functions that contribute to parasite clearance during antimalarial treatment and their relationship to malaria transmission intensity have not been characterized. METHODS: Levels of immunoglobulin G (IgG) subclasses and C1q fixation in response to Plasmodium falciparum merozoite antigens (erythrocyte-binding antigen [EBA] 175RIII-V, merozoite surface protein 2 [MSP-2], and MSP-142) and opsonic phagocytosis of merozoites were measured in a multinational trial assessing the efficacy of artesunate therapy across 11 Southeast Asian sites. Regression analyses assessed the effects of antibody seropositivity on the parasite clearance half-life (PC½), having a PC½ of ≥5 hours, and having parasitemia 3 days after treatment. RESULTS: IgG3, followed by IgG1, was the predominant IgG subclass detected (seroprevalence range, 5%-35% for IgG1 and 27%-41% for IgG3), varied across study sites, and was lowest in study sites with the lowest transmission intensity and slowest mean PC½. IgG3, C1q fixation, and opsonic-phagocytosis seropositivity were associated with a faster PC½ (range of the mean reduction in PC½, 0.47-1.16 hours; P range, .001-.03) and a reduced odds of having a PC½ of ≥5 hours and having parasitemia 3 days after treatment. CONCLUSIONS: The prevalence of IgG3, complement-fixing antibodies, and merozoite phagocytosis vary according to transmission intensity, are associated with faster parasite clearance, and may be sensitive surrogates of an augmented clearance capacity of infected erythrocytes. Determining the functional immune mechanisms associated with parasite clearance will improve characterization of artemisinin resistance.


Asunto(s)
Antimaláricos/uso terapéutico , Artesunato/uso terapéutico , Inmunidad Innata , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/inmunología , Plasmodium falciparum/genética , Adolescente , Adulto , Anciano , Anticuerpos Antiprotozoarios/sangre , Antígenos de Protozoos/inmunología , Niño , Preescolar , Farmacorresistencia Microbiana , Eritrocitos/inmunología , Eritrocitos/parasitología , Femenino , Humanos , Inmunoglobulina G/sangre , Lactante , Malaria Falciparum/parasitología , Malaria Falciparum/transmisión , Masculino , Merozoítos/inmunología , Persona de Mediana Edad , Parasitemia/tratamiento farmacológico , Fagocitosis/inmunología , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/aislamiento & purificación , Proteínas Protozoarias/inmunología , Estudios Seroepidemiológicos , Resultado del Tratamiento , Adulto Joven
20.
Malar J ; 18(1): 114, 2019 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-30940150

RESUMEN

BACKGROUND: Mutations in Pfkelch13 and Pfplasmepsin2/3 gene amplification are well-established markers for artemisinin and piperaquine resistance in Plasmodium falciparum, a widespread problem in the Greater Mekong Subregion (GMS). The Plasmodium vivax parasite population has experienced varying drug pressure dependent on local drug policies. We investigated the correlation between drug pressure from artemisinins and piperaquine and mutations in the P. vivax orthologous genes Pvkelch12 and Pvplasmepsin4 (Pvpm4), as candidate resistance markers. METHODS: Blood samples from 734 P. vivax patients were obtained from Thailand (n = 399), Lao PDR (n = 296) and Cambodia (n = 39) between 2007 and 2017. Pvkelch12 and Pvpm4 was amplified and sequenced to assess gene mutations. To assess PvPM4 gene amplification, a Taqman® Real-Time PCR method was developed and validated. Selection of non-synonymous mutations was assessed by its ratio with synonymous mutations (Ka/Ks ratios). Mutation rates were compared to the estimated local drug pressure. RESULTS: Polymorphisms in Pvkelch12 were rare. Pvkelch12 mutations V552I, K151Q and M124I were observed in 1.0% (7/734) of P. vivax samples. V552I was the most common mutation with a frequency of 0.7% (5/734), most of which (4/5) observed in Ubon Ratchathani, Thailand. Polymorphisms in Pvpm4 were more common, with a frequency of 40.3% (123/305) in 305 samples from Thailand, Lao PDR and Cambodia, but this was not related to the estimated piperaquine drug pressure in these areas (Pearson's χ2 test, p = 0.50). Pvpm4 mutation V165I was most frequent in Tak, Thailand (40.2%, 43/107) followed by Pailin, Cambodia (43.5%, 37/85), Champasak, Lao PDR (40.4%, 23/57) and Ubon Ratchathani, Thailand (35.7%, 20/56). Pvpm4 amplification was not observed in 141 samples from Thailand and Cambodia. For both Pvkelch12 and Pvpm4, in all areas and at all time points, the Ka/Ks values were < 1, suggesting no purifying selection. CONCLUSIONS: A novel real-time PCR-based method to assess P. vivax Pvpm4 gene amplification was developed. Drug pressure with artemisinins and piperaquine in the GMS was not clearly related to signatures of selection for mutations in the P. vivax orthologous resistance genes Pvkelch12 and Pvpm4 in areas under investigation. Current resistance of P. vivax to these drugs is unlikely and additional observations including analysis of associated clinical data from these regions could further clarify current findings.


Asunto(s)
Ácido Aspártico Endopeptidasas/genética , Resistencia a Medicamentos , Amplificación de Genes , Malaria Vivax/parasitología , Plasmodium vivax/genética , Polimorfismo Genético , Proteínas Protozoarias/genética , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Artemisininas/farmacología , Artemisininas/uso terapéutico , Cambodia , Marcadores Genéticos , Genotipo , Humanos , Laos , Tasa de Mutación , Mutación Missense , Quinolinas/farmacología , Quinolinas/uso terapéutico , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ADN , Tailandia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA