Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Acc Chem Res ; 52(9): 2703-2712, 2019 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-31433171

RESUMEN

The past decades have witnessed the development of a field dedicated to targeting tumor vasculature for cancer therapy. In contrast to conventional chemotherapeutics that need to penetrate into tumor tissues for killing tumor cells, the agents targeting tumor vascular system have two major advantages: direct contact with vascular endothelial cells or the blood and less possibility to induce drug resistance because of high gene stability of endothelial cells. More specifically, various angiogenesis inhibitors (AIs) and vascular disrupting agents (VDAs) that block tumor blood supply to inhibit tumor progression, some of which have been applied clinically, have been described. However, off-target effects and high effective doses limit the utility of these formulations in cancer patients. Thus, new strategies with improved therapeutic efficacy and safety are needed for tumor vessel targeting therapy. With the burgeoning developments in nanotechnology, smart nanotherapeutics now offer unprecedented potential for targeting tumor vasculature. Based on specific structural and functional features of the tumor vasculature, a number of different nanoscale delivery systems have been proposed for cancer therapy. In this Account, we summarize several distinct strategies to modulate tumor vasculature with various smart nanotherapeutics for safe and effective tumor therapy developed by our research programs. Inspired by the blood coagulation cascade, we generated nanoparticle-mediated tumor vessel infarction strategies that selectively block tumor blood supply to starve the tumor to death. By specifically delivering thrombin loaded DNA nanorobots (Nanorobot-Th) into tumor vessels, an intratumoral thrombosis is triggered to induce vascular infarction and, ultimately, tumor necrosis. Mimicking the coagulation cascade, a smart polymeric nanogel achieves permanent and peripheral embolization of liver tumors. Considering the critical role of platelets in maintaining tumor vessel integrity, a hybrid (PLP-D-R) nanoparticle selectively depleting tumor-associated platelets (TAP) to boost tumor vessel permeability was developed for enhancing intratumoral drug accumulation. In addition, benefiting from a better understanding of the molecular and cellular underpinnings of vascular normalization, several tumor acidity responsive nanotherapeutics, encapsulating therapeutic peptides, and small interfering RNA were developed to correct the abnormal features of the tumor vasculature. This made the tumor vessels more efficient for drug delivery. While we are still exploring the mechanisms of action of these novel nanoformulations, we expect that the strategies summarized here will offer a promising platform to design effective next-generation nanotherapeutics against cancer and facilitate the clinical translation of smart nanotherapeutics that target tumor vasculature.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Antineoplásicos/farmacología , Nanopartículas/química , Nanotecnología , Neoplasias/tratamiento farmacológico , Neovascularización Patológica/tratamiento farmacológico , Proliferación Celular/efectos de los fármacos , Sistemas de Liberación de Medicamentos , Humanos , Neoplasias/patología , Neovascularización Patológica/patología
2.
Nano Lett ; 19(7): 4721-4730, 2019 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-31180684

RESUMEN

Within tumors, the coagulation-inducing protein tissue factor (TF), a major initiator of blood coagulation, has been shown to play a critical role in the hematogenous metastasis of tumors, due to its effects on tumor hypercoagulability and on the mediation of interactions between platelets and tumor cells. Targeting tumor-associated TF has therefore great therapeutic potential for antimetastasis therapy and preventing thrombotic complication in cancer patients. Herein, we reported a novel peptide-based nanoparticle that targets delivery and release of small interfering RNA (siRNA) into the tumor site to silence the expression of tumor-associated TF. We showed that suppression of TF expression in tumor cells blocks platelet adhesion surrounding tumor cells in vitro. The downregulation of TF expression in intravenously administered tumor cells (i.e., simulated circulating tumor cells [CTCs]) prevented platelet adhesion around CTCs and decreased CTCs survival in the lung. In a breast cancer mouse model, siRNA-containing nanoparticles efficiently attenuated TF expression in the tumor microenvironment and remarkably reduced the amount of lung metastases in both an experimental lung metastasis model and tumor-bearing mice. What's more, this strategy reversed the hypercoagulable state of the tumor bearing mice by decreasing the generation of thrombin-antithrombin complexes (TAT) and activated platelets, both of which are downstream products of TF. Our study describes a promising approach to combat metastasis and prevent cancer-associated thrombosis, which advances TF as a therapeutic target toward clinic applications.


Asunto(s)
Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Silenciador del Gen , Neoplasias Pulmonares , Nanopartículas , Proteínas de Neoplasias , Neoplasias Experimentales , ARN Interferente Pequeño , Trombofilia , Tromboplastina , Trombosis , Animales , Línea Celular Tumoral , Femenino , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundario , Ratones Desnudos , Nanopartículas/química , Nanopartículas/uso terapéutico , Metástasis de la Neoplasia , Proteínas de Neoplasias/biosíntesis , Proteínas de Neoplasias/genética , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/genética , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patología , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología , Trombofilia/genética , Trombofilia/metabolismo , Trombofilia/prevención & control , Tromboplastina/biosíntesis , Tromboplastina/genética , Trombosis/genética , Trombosis/metabolismo , Trombosis/patología , Trombosis/prevención & control
3.
Small ; 14(11): e1703812, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29450964

RESUMEN

Surface functionality is an essential component for processing and application of metal-organic frameworks (MOFs). A simple and cost-effective strategy for DNA-mediated surface engineering of zirconium-based nanoscale MOFs (NMOFs) is presented, capable of endowing them with specific molecular recognition properties and thus expanding their potential for applications in nanotechnology and biotechnology. It is shown that efficient immobilization of functional DNA on NMOFs can be achieved via surface coordination chemistry. With this strategy, it is demonstrated that such porphyrin-based NMOFs can be modified with a DNA aptamer for targeting specific cancer cells. Furthermore, the DNA-NMOFs can facilitate the delivery of therapeutic DNA (e.g., CpG) into cells for efficient recognition of endosomal Toll-like receptor 9 and subsequent enhanced immunostimulatory activity in vitro and in vivo. No apparent toxicity is observed with systemic delivery of the DNA-NMOFs in vivo. Overall, these results suggest that the strategy allows for surface functionalization of MOFs with different functional DNAs, extending the use of these materials to diverse applications in biosensor, bioimaging, and nanomedicine.


Asunto(s)
Estructuras Metalorgánicas , Nanomedicina/métodos , ADN/química , Nanoestructuras/química , Porfirinas/química , Circonio/química
4.
J Am Chem Soc ; 139(39): 13804-13810, 2017 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-28899098

RESUMEN

Creating nanoparticle dimers has attracted extensive interest. However, it still remains a great challenge to synthesize heterodimers with asymmetric compositions and synergistically enhanced functions. In this work, we report the synthesis of high quality heterodimers composed of porphyrinic nanoscale metal-organic frameworks (nMOF) and lanthanide-doped upconversion nanoparticles (UCNPs). Due to the dual optical properties inherited from individual nanoparticles and their interactions, absorption of low energy photons by the UCNPs is followed by energy transfer to the nMOFs, which then undergo activation of porphyrins to generate singlet oxygen. Furthermore, the strategy enables the synthesis of heterodimers with tunable UCNP size and dual NIR light harvesting functionality. We demonstrated that the hybrid architectures represent a promising platform to combine NIR-induced photodynamic therapy and chemotherapy for efficient cancer treatment. We believe that such heterodimers are capable of expanding their potential for applications in solar cells, photocatalysis, and nanomedicine.

5.
Acta Pharm Sin B ; 11(7): 2059-2069, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34386338

RESUMEN

Selective occlusion of tumor vasculature has proven to be an effective strategy for cancer therapy. Among vascular coagulation agents, the extracellular domain of coagulation-inducing protein tissue factor, truncated tissue factor (tTF), is the most widely used. Since the truncated protein exhibits no coagulation activity and is rapidly cleared in the circulation, free tTF cannot be used for cancer treatment on its own but must be combined with other moieties. We here developed a novel, tumor-specific tTF delivery system through coupling tTF with the DNA aptamer, AS1411, which selectively binds to nucleolin receptors overexpressing on the surface of tumor vascular endothelial cells and is specifically cytotoxic to target cells. Systemic administration of the tTF-AS1411 conjugates into tumor-bearing animals induced intravascular thrombosis solely in tumors, thus reducing tumor blood supply and inducing tumor necrosis without apparent side effects. This conjugate represents a uniquely attractive candidate for the clinical translation of vessel occlusion agent for cancer therapy.

6.
Adv Mater ; 33(20): e2006007, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33792097

RESUMEN

Due to their ability to elicit a potent immune reaction with low systemic toxicity, cancer vaccines represent a promising strategy for treating tumors. Considerable effort has been directed toward improving the in vivo efficacy of cancer vaccines, with direct lymph node (LN) targeting being the most promising approach. Here, a click-chemistry-based active LN accumulation system (ALAS) is developed by surface modification of lymphatic endothelial cells with an azide group, which provide targets for dibenzocyclooctyne (DBCO)-modified liposomes, to improve the delivery of encapsulated antigen and adjuvant to LNs. When loading with OVA257-264 peptide and poly(I:C), the formulation elicits an enhanced CD8+ T cell response in vivo, resulting in a much more efficient therapeutic effect and prolonged median survival of mice. Compared to treatment with DBCO-conjugated liposomes (DL)-Ag/Ad without the azide targeting, the percent survival of ALAS-vaccine-treated mice improves by 100% over 60 days. Altogether, the findings indicate that the novel ALAS approach is a powerful strategy to deliver vaccine components to LNs for enhanced antitumor immunity.


Asunto(s)
Vacunas contra el Cáncer , Inmunoterapia , Animales , Células Endoteliales , Ratones
7.
Adv Mater ; 32(4): e1905145, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31788896

RESUMEN

Rapid cut-off of blood supply in diseases involving thrombosis is a major cause of morbidity and mortality worldwide. However, the current thrombolysis strategies offer limited results due to the therapeutics' short half-lives, low targeting ability, and unexpected bleeding complications. Inspired by the innate roles of platelets in hemostasis and pathological thrombus, platelet membrane-camouflaged polymeric nanoparticles (nanoplatelets) are developed for targeting delivery of the thrombolytic drug, recombinant tissue plasminogen activator (rt-PA), to local thrombus sites. The tailor-designed nanoplatelets efficiently accumulate at the thrombi in pulmonary embolism and mesenteric arterial thrombosis model mice, eliciting a significantly enhanced thrombolysis activity compared to free rt-PA. In addition, the nanoplatelets exhibit improved therapeutic efficacy over free rt-PA in an ischemic stroke model. Analysis of in vivo coagulation indicators suggests the nanoplatelets might possess a low risk of bleeding complications. The hybrid biomimetic nanoplatelets described offer a promising solution to improve the efficacy and reduce the bleeding risk of thrombolytic therapy in a broad spectrum of thrombosis diseases.


Asunto(s)
Portadores de Fármacos/química , Nanopartículas/química , Activador de Tejido Plasminógeno/química , Animales , Modelos Animales de Enfermedad , Fibrinolíticos/química , Fibrinolíticos/uso terapéutico , Ratones , Polímeros/química , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/farmacología , Trombosis/tratamiento farmacológico , Activador de Tejido Plasminógeno/genética , Activador de Tejido Plasminógeno/uso terapéutico
8.
Chem Commun (Camb) ; 54(59): 8182-8185, 2018 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-29947370

RESUMEN

Here we report, for the first time, the growth of single-crystalline mesoporous MOFs with well-controlled orientation on the surface of gold nanorods. Importantly, it showed that trace amounts of water could induce the formation of MOFs of different phases and shapes, which was critical for the synthesis of such mesoporous heterostructures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA