Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 607(7919): 585-592, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35732737

RESUMEN

The regenerative potential of mammalian peripheral nervous system neurons after injury is critically limited by their slow axonal regenerative rate1. Regenerative ability is influenced by both injury-dependent and injury-independent mechanisms2. Among the latter, environmental factors such as exercise and environmental enrichment have been shown to affect signalling pathways that promote axonal regeneration3. Several of these pathways, including modifications in gene transcription and protein synthesis, mitochondrial metabolism and the release of neurotrophins, can be activated by intermittent fasting (IF)4,5. However, whether IF influences the axonal regenerative ability remains to be investigated. Here we show that IF promotes axonal regeneration after sciatic nerve crush in mice through an unexpected mechanism that relies on the gram-positive gut microbiome and an increase in the gut bacteria-derived metabolite indole-3-propionic acid (IPA) in the serum. IPA production by Clostridium sporogenes is required for efficient axonal regeneration, and delivery of IPA after sciatic injury significantly enhances axonal regeneration, accelerating the recovery of sensory function. Mechanistically, RNA sequencing analysis from sciatic dorsal root ganglia suggested a role for neutrophil chemotaxis in the IPA-dependent regenerative phenotype, which was confirmed by inhibition of neutrophil chemotaxis. Our results demonstrate the ability of a microbiome-derived metabolite, such as IPA, to facilitate regeneration and functional recovery of sensory axons through an immune-mediated mechanism.


Asunto(s)
Indoles , Regeneración Nerviosa , Propionatos , Cicatrización de Heridas , Animales , Ratones , Axones/efectos de los fármacos , Axones/fisiología , Quimiotaxis de Leucocito , Clostridium/metabolismo , Ayuno , Ganglios Espinales/metabolismo , Microbioma Gastrointestinal , Indoles/sangre , Indoles/metabolismo , Indoles/farmacología , Compresión Nerviosa , Factores de Crecimiento Nervioso/metabolismo , Regeneración Nerviosa/efectos de los fármacos , Neutrófilos/citología , Neutrófilos/inmunología , Propionatos/sangre , Propionatos/metabolismo , Propionatos/farmacología , Recuperación de la Función , Nervio Ciático/lesiones , Análisis de Secuencia de ARN , Cicatrización de Heridas/efectos de los fármacos
2.
Proc Natl Acad Sci U S A ; 121(38): e2402518121, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39254997

RESUMEN

The in vivo three-dimensional genomic architecture of adult mature neurons at homeostasis and after medically relevant perturbations such as axonal injury remains elusive. Here, we address this knowledge gap by mapping the three-dimensional chromatin architecture and gene expression program at homeostasis and after sciatic nerve injury in wild-type and cohesin-deficient mouse sensory dorsal root ganglia neurons via combinatorial Hi-C, promoter-capture Hi-C, CUT&Tag for H3K27ac and RNA-seq. We find that genes involved in axonal regeneration form long-range, complex chromatin loops, and that cohesin is required for the full induction of the regenerative transcriptional program. Importantly, loss of cohesin results in disruption of chromatin architecture and severely impaired nerve regeneration. Complex enhancer-promoter loops are also enriched in the human fetal cortical plate, where the axonal growth potential is highest, and are lost in mature adult neurons. Together, these data provide an original three-dimensional chromatin map of adult sensory neurons in vivo and demonstrate a role for cohesin-dependent long-range promoter interactions in nerve regeneration.


Asunto(s)
Axones , Cromatina , Cohesinas , Regeneración Nerviosa , Regiones Promotoras Genéticas , Células Receptoras Sensoriales , Animales , Células Receptoras Sensoriales/metabolismo , Células Receptoras Sensoriales/fisiología , Ratones , Regiones Promotoras Genéticas/genética , Cromatina/metabolismo , Regeneración Nerviosa/genética , Regeneración Nerviosa/fisiología , Axones/metabolismo , Axones/fisiología , Humanos , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/genética , Elementos de Facilitación Genéticos/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Ganglios Espinales/metabolismo , Ganglios Espinales/citología , Nervio Ciático/metabolismo
3.
FASEB J ; 38(10): e23659, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38733301

RESUMEN

HDAC3 inhibition has been shown to improve memory and reduce amyloid-ß (Aß) in Alzheimer's disease (AD) models, but the underlying mechanisms are unclear. We investigated the molecular effects of HDAC3 inhibition on AD pathology, using in vitro and ex vivo models of AD, based on our finding that HDAC3 expression is increased in AD brains. For this purpose, N2a mouse neuroblastoma cells as well as organotypic brain cultures (OBCSs) of 5XFAD and wild-type mice were incubated with various concentrations of the HDAC3 selective inhibitor RGFP966 (0.1-10 µM) for 24 h. Treatment with RGFP966 or HDAC3 knockdown in N2a cells was associated with an increase on amyloid precursor protein (APP) and mRNA expressions, without alterations in Aß42 secretion. In vitro chromatin immunoprecipitation analysis revealed enriched HDAC3 binding at APP promoter regions. The increase in APP expression was also detected in OBCSs from 5XFAD mice incubated with 1 µM RGFP966, without changes in Aß. In addition, HDAC3 inhibition resulted in a reduction of activated Iba-1-positive microglia and astrocytes in 5XFAD slices, which was not observed in OBCSs from wild-type mice. mRNA sequencing analysis revealed that HDAC3 inhibition modulated neuronal regenerative pathways related to neurogenesis, differentiation, axonogenesis, and dendritic spine density in OBCSs. Our findings highlight the complexity and diversity of the effects of HDAC3 inhibition on AD models and suggest that HDAC3 may have multiple roles in the regulation of APP expression and processing, as well as in the modulation of neuroinflammatory and neuroprotective genes.


Asunto(s)
Enfermedad de Alzheimer , Precursor de Proteína beta-Amiloide , Histona Desacetilasas , Animales , Ratones , Acrilamidas , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Encéfalo/metabolismo , Encéfalo/patología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Histona Desacetilasas/genética , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/metabolismo , Fenilendiaminas/farmacología
4.
PLoS Biol ; 20(9): e3001310, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36126035

RESUMEN

The interruption of spinal circuitry following spinal cord injury (SCI) disrupts neural activity and is followed by a failure to mount an effective regenerative response resulting in permanent neurological disability. Functional recovery requires the enhancement of axonal and synaptic plasticity of spared as well as injured fibres, which need to sprout and/or regenerate to form new connections. Here, we have investigated whether the epigenetic stimulation of the regenerative gene expression program can overcome the current inability to promote neurological recovery in chronic SCI with severe disability. We delivered the CBP/p300 activator CSP-TTK21 or vehicle CSP weekly between week 12 and 22 following a transection model of SCI in mice housed in an enriched environment. Data analysis showed that CSP-TTK21 enhanced classical regenerative signalling in dorsal root ganglia sensory but not cortical motor neurons, stimulated motor and sensory axon growth, sprouting, and synaptic plasticity, but failed to promote neurological sensorimotor recovery. This work provides direct evidence that clinically suitable pharmacological CBP/p300 activation can promote the expression of regeneration-associated genes and axonal growth in a chronic SCI with severe neurological disability.


Asunto(s)
Regeneración Nerviosa , Traumatismos de la Médula Espinal , Animales , Axones/metabolismo , Ratones , Regeneración Nerviosa/fisiología , Plasticidad Neuronal/fisiología , Recuperación de la Función/fisiología , Traumatismos de la Médula Espinal/metabolismo
5.
EMBO J ; 38(13): e101032, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31268609

RESUMEN

The molecular mechanisms discriminating between regenerative failure and success remain elusive. While a regeneration-competent peripheral nerve injury mounts a regenerative gene expression response in bipolar dorsal root ganglia (DRG) sensory neurons, a regeneration-incompetent central spinal cord injury does not. This dichotomic response offers a unique opportunity to investigate the fundamental biological mechanisms underpinning regenerative ability. Following a pharmacological screen with small-molecule inhibitors targeting key epigenetic enzymes in DRG neurons, we identified HDAC3 signalling as a novel candidate brake to axonal regenerative growth. In vivo, we determined that only a regenerative peripheral but not a central spinal injury induces an increase in calcium, which activates protein phosphatase 4 that in turn dephosphorylates HDAC3, thus impairing its activity and enhancing histone acetylation. Bioinformatics analysis of ex vivo H3K9ac ChIPseq and RNAseq from DRG followed by promoter acetylation and protein expression studies implicated HDAC3 in the regulation of multiple regenerative pathways. Finally, genetic or pharmacological HDAC3 inhibition overcame regenerative failure of sensory axons following spinal cord injury. Together, these data indicate that PP4-dependent HDAC3 dephosphorylation discriminates between axonal regeneration and regenerative failure.


Asunto(s)
Ganglios Espinales/fisiología , Histona Desacetilasas/metabolismo , Traumatismos de los Nervios Periféricos/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Axones , Células Cultivadas , Modelos Animales de Enfermedad , Epigénesis Genética/efectos de los fármacos , Femenino , Masculino , Ratones , Regeneración Nerviosa , Fosforilación/efectos de los fármacos , Transducción de Señal
6.
Medicina (Kaunas) ; 59(5)2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37241169

RESUMEN

Objective: The aim of this study is to show our experience with the correct management of patients suffering from odontogenic sinusitis with oroantral communication and fistula. Methods: According to the inclusion criteria, 41 patients were enrolled in this retrospective study with a diagnosis of odontogenic sinusitis with oroantral communication and fistula; 1 patient with pre-implantological complication, 14 with implantological complications, and 26 with classical complications. Results: Two patients were treated with a fractioned combined approach, 13 patients were treated with an oral approach only, and 26 patients were treated with a combination. There was a complete resolution of the symptoms and closure of the fistula in all the patients enrolled. Conclusions: In our study, in all 41 patients, there was a surgical success. The best option is to use a multidisciplinary approach for patients suffering from odontogenic sinusitis.


Asunto(s)
Sinusitis Maxilar , Sinusitis , Humanos , Sinusitis Maxilar/cirugía , Sinusitis Maxilar/complicaciones , Estudios Retrospectivos , Sinusitis/complicaciones , Fístula Oroantral/etiología , Fístula Oroantral/cirugía
7.
Int J Mol Sci ; 23(2)2022 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-35054943

RESUMEN

While about half of the population experience persistent pain associated with tissue damages during their lifetime, current symptom-based approaches often fail to reduce such pain to a satisfactory level. To provide better patient care, mechanism-based analgesic approaches must be developed, which necessitates a comprehensive understanding of the nociceptive mechanism leading to tissue injury-associated persistent pain. Epigenetic events leading the altered transcription in the nervous system are pivotal in the maintenance of pain in tissue injury. However, the mechanisms through which those events contribute to the persistence of pain are not fully understood. This review provides a summary and critical evaluation of two epigenetic mechanisms, DNA methylation and non-coding RNA expression, on transcriptional modulation in nociceptive pathways during the development of tissue injury-associated pain. We assess the pre-clinical data and their translational implication and evaluate the potential of controlling DNA methylation and non-coding RNA expression as novel analgesic approaches and/or biomarkers of persistent pain.


Asunto(s)
Dolor Crónico/etiología , Metilación de ADN , Epigénesis Genética , ARN no Traducido , Heridas y Lesiones/complicaciones , Adaptación Biológica , Biomarcadores , Dolor Crónico/diagnóstico , Dolor Crónico/metabolismo , Dolor Crónico/terapia , Islas de CpG , Diagnóstico Diferencial , Susceptibilidad a Enfermedades , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos
8.
J Neurosci ; 36(43): 11107-11119, 2016 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-27798190

RESUMEN

Physiological levels of ROS support neurite outgrowth and axonal specification, but the mechanisms by which ROS are able to shape neurons remain unknown. Ca2+, a broad intracellular second messenger, promotes both Rac1 activation and neurite extension. Ca2+ release from the endoplasmic reticulum, mediated by both the IP3R1 and ryanodine receptor (RyR) channels, requires physiological ROS levels that are mainly sustained by the NADPH oxidase (NOX) complex. In this work, we explore the contribution of the link between NOX and RyR-mediated Ca2+ release toward axonal specification of rat hippocampal neurons. Using genetic approaches, we find that NOX activation promotes both axonal development and Rac1 activation through a RyR-mediated mechanism, which in turn activates NOX through Rac1, one of the NOX subunits. Collectively, these data suggest a feedforward mechanism that integrates both NOX activity and RyR-mediated Ca2+ release to support cellular mechanisms involved in axon development. SIGNIFICANCE STATEMENT: High levels of ROS are frequently associated with oxidative stress and disease. In contrast, physiological levels of ROS, mainly sustained by the NADPH oxidase (NOX) complex, promote neuronal development and axonal growth. However, the mechanisms by which ROS shape neurons have not been described. Our work suggests that NOX-derived ROS promote axonal growth by regulating Rac1 activity, a molecular determinant of axonal growth, through a ryanodine receptor (RyR)-mediated Ca2+ release mechanism. In addition, Rac1, one of the NOX subunits, was activated after RyR-mediated Ca2+ release, suggesting a feedforward mechanism between NOX and RyR. Collectively, our data suggest a novel mechanism that is instrumental in sustaining physiological levels of ROS required for axonal growth of hippocampal neurons.


Asunto(s)
Orientación del Axón/fisiología , Señalización del Calcio/fisiología , Retroalimentación Fisiológica/fisiología , NADPH Oxidasas/metabolismo , Neuronas/fisiología , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Animales , Calcio/metabolismo , Células Cultivadas , Femenino , Regulación del Desarrollo de la Expresión Génica/fisiología , Hipocampo/fisiología , Hipocampo/ultraestructura , Masculino , Plasticidad Neuronal/fisiología , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo
9.
Brain ; 138(Pt 7): 1843-62, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25981963

RESUMEN

Regeneration of injured central nervous system axons is highly restricted, causing neurological impairment. To date, although the lack of intrinsic regenerative potential is well described, a key regulatory molecular mechanism for the enhancement of both axonal regrowth and functional recovery after central nervous system injury remains elusive. While ubiquitin ligases coordinate neuronal morphogenesis and connectivity during development as well as after axonal injury, their role specifically in axonal regeneration is unknown. Following a bioinformatics network analysis combining ubiquitin ligases with previously defined axonal regenerative proteins, we found a triad composed of the ubiquitin ligases MDM4, MDM2 and the transcription factor p53 (encoded by TP53) as a putative central signalling complex restricting the regeneration program. Indeed, conditional deletion of MDM4 or pharmacological inhibition of MDM2/p53 interaction in the eye and spinal cord promote axonal regeneration and sprouting of the optic nerve after crush and of supraspinal tracts after spinal cord injury. The double conditional deletion of MDM4-p53 as well as MDM2 inhibition in p53-deficient mice blocks this regenerative phenotype, showing its dependence upon p53. Genome-wide gene expression analysis from ex vivo fluorescence-activated cell sorting in MDM4-deficient retinal ganglion cells identifies the downstream target IGF1R, whose activity and expression was found to be required for the regeneration elicited by MDM4 deletion. Importantly, we demonstrate that pharmacological enhancement of the MDM2/p53-IGF1R axis enhances axonal sprouting as well as functional recovery after spinal cord injury. Thus, our results show MDM4-MDM2/p53-IGF1R as an original regulatory mechanism for CNS regeneration and offer novel targets to enhance neurological recovery.media-1vid110.1093/brain/awv125_video_abstractawv125_video_abstract.


Asunto(s)
Regeneración Nerviosa/fisiología , Traumatismos del Nervio Óptico/metabolismo , Recuperación de la Función/fisiología , Transducción de Señal/fisiología , Traumatismos de la Médula Espinal/metabolismo , Animales , Axones/metabolismo , Axones/patología , Biología Computacional , Modelos Animales de Enfermedad , Citometría de Flujo , Immunoblotting , Inmunohistoquímica , Inmunoprecipitación , Factor I del Crecimiento Similar a la Insulina/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Compresión Nerviosa , Traumatismos del Nervio Óptico/patología , Traumatismos del Nervio Óptico/fisiopatología , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/fisiopatología , Transcriptoma , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
10.
J Neurosci ; 34(25): 8630-45, 2014 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-24948817

RESUMEN

Correlative evidence suggests that GABAergic signaling plays an important role in the regulation of activity-dependent hippocampal neurogenesis and emotional behavior in adult mice. However, whether these are causally linked at the molecular level remains elusive. Nuclear factor of activated T cell (NFAT) proteins are activity-dependent transcription factors that respond to environmental stimuli in different cell types, including hippocampal newborn neurons. Here, we identify NFATc4 as a key activity-dependent transcriptional regulator of GABA signaling in hippocampal progenitor cells via an unbiased high-throughput genome-wide study. Next, we demonstrate that GABAA receptor (GABAAR) signaling modulates hippocampal neurogenesis through NFATc4 activity, which in turn regulates GABRA2 and GABRA4 subunit expression via binding to specific promoter responsive elements, as assessed by ChIP and luciferase assays. Furthermore, we show that selective pharmacological enhancement of GABAAR activity promotes hippocampal neurogenesis via the calcineurin/NFATc4 axis. Importantly, the NFATc4-dependent increase in hippocampal neurogenesis after GABAAR stimulation is required for the suppression of the anxiety response in mice. Together, these data provide a novel molecular insight into the regulation of the anxiety response in mice, suggesting that the GABAAR/NFATc4 axis is a druggable target for the therapy of emotional disorders.


Asunto(s)
Ansiedad/metabolismo , Ansiedad/prevención & control , Factores de Transcripción NFATC/metabolismo , Neurogénesis/fisiología , Receptores de GABA-A/fisiología , Transducción de Señal/fisiología , Animales , Ansiedad/patología , Hipocampo/citología , Hipocampo/metabolismo , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA