Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
J Appl Microbiol ; 135(9)2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39270663

RESUMEN

AIM: Bacterial biofilms can form on surfaces in hospitals, clinics, farms, and food processing plants, representing a possible source of infections and cross-contamination. This study investigates the effectiveness of new commercial wipes against Staphylococcus aureus and Pseudomonas aeruginosa biofilms (early attachment and formed biofilms), assessing LH SALVIETTE wipes (Lombarda H S.r.l.) potential for controlling biofilm formation. METHODS AND RESULTS: The wipes efficacy was studied against the early attachment phase and formed biofilm of S. aureus ATCC 6538 and P. aeruginosa ATCC 15442 on a polyvinyl chloride (PVC) surface, following a modified standard test EN 16615:2015, measuring Log10 reduction and cell viability using live/dead staining. It was also evaluated the wipes anti-adhesive activity over time (3 h, 2 4h), calculating CFU.mL-1 reduction. Data were analyzed using t-student test. The wipes significantly reduced both early phase and formed S. aureus biofilm, preventing dispersion on PVC surfaces. Live/dead imaging showed bacterial cluster disaggregation and killing action. The bacterial adhesive capability decreased after short-time treatment (3 h) with the wipes compared to 24 h. CONCLUSIONS: Results demonstrated decreased bacterial count on PVC surface both for early attachment phase and formed biofilms, also preventing the bacterial biofilm dispersion.


Asunto(s)
Adhesión Bacteriana , Biopelículas , Cloruro de Polivinilo , Pseudomonas aeruginosa , Staphylococcus aureus , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Staphylococcus aureus/fisiología , Staphylococcus aureus/efectos de los fármacos , Pseudomonas aeruginosa/fisiología , Pseudomonas aeruginosa/efectos de los fármacos , Adhesión Bacteriana/efectos de los fármacos , Desinfectantes/farmacología
2.
Int J Mol Sci ; 24(2)2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36674518

RESUMEN

Chronic wounds have harmful effects on both patients and healthcare systems. Wound chronicity is attributed to an impaired healing process due to several host and local factors that affect healing pathways. The resulting ulcers contain a wide variety of microorganisms that are mostly resistant to antimicrobials and possess the ability to form mono/poly-microbial biofilms. The search for new, effective and safe compounds to handle chronic wounds has come a long way throughout the history of medicine, which has included several studies and trials of conventional treatments. Treatments focus on fighting the microbial colonization that develops in the wound by multidrug resistant pathogens. The development of molecular medicine, especially in antibacterial agents, needs an in vitro model similar to the in vivo chronic wound environment to evaluate the efficacy of antimicrobial agents. The Lubbock chronic wound biofilm (LCWB) model is an in vitro model developed to mimic the pathogen colonization and the biofilm formation of a real chronic wound, and it is suitable to screen the antibacterial activity of innovative compounds. In this review, we focused on the characteristics of chronic wound biofilms and the contribution of the LCWB model both to the study of wound poly-microbial biofilms and as a model for novel treatment strategies.


Asunto(s)
Antiinfecciosos , Infección de Heridas , Humanos , Antiinfecciosos/farmacología , Antiinfecciosos/uso terapéutico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Infección Persistente , Infección de Heridas/tratamiento farmacológico , Infección de Heridas/microbiología , Biopelículas , Pseudomonas aeruginosa
3.
Int J Mol Sci ; 24(6)2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36982855

RESUMEN

Helicobacter pylori colonizes human gastric mucosa, overcoming stressful conditions and entering in a dormant state. This study evaluated: (i) H. pylori's physiological changes from active to viable-but-non-culturable (VBNC) and persister (AP) states, establishing times/conditions; (ii) the ability of vitamin C to interfere with dormancy generation/resuscitation. A dormant state was induced in clinical MDR H. pylori 10A/13 by: nutrient starvation (for VBNC generation), incubating in an unenriched medium (Brucella broth) or saline solution (SS), and (for AP generation) treatment with 10xMIC amoxicillin (AMX). The samples were monitored after 24, 48, and 72 h, 8-14 days by OD600, CFUs/mL, Live/Dead staining, and an MTT viability test. Afterwards, vitamin C was added to the H. pylori suspension before/after the generation of dormant states, and monitoring took place at 24, 48, and 72 h. The VBNC state was generated after 8 days in SS, and the AP state in AMX for 48 h. Vitamin C reduced its entry into a VBNC state. In AP cells, Vitamin C delayed entry, decreasing viable coccal cells and increasing bacillary/U-shaped bacteria. Vitamin C increased resuscitation (60%) in the VBNC state and reduced the aggregates of the AP state. Vitamin C reduced the incidence of dormant states, promoting the resuscitation rate. Pretreatment with Vitamin C could favor the selection of microbial vegetative forms that are more susceptible to H. pylori therapeutical schemes.


Asunto(s)
Helicobacter pylori , Humanos , Ácido Ascórbico/farmacología , Mucosa Gástrica , Solución Salina , Viabilidad Microbiana
4.
Int J Mol Sci ; 23(13)2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35805944

RESUMEN

Innovative non-antibiotic compounds such as graphene oxide (GO) and light-emitting diodes (LEDs) may represent a valid strategy for managing chronic wound infections related to resistant pathogens. This study aimed to evaluate 630 nm LED and 880 nm LED ability to enhance the GO antimicrobial activity against Staphylococcus aureus- and Pseudomonas aeruginosa-resistant strains in a dual-species biofilm in the Lubbock chronic wound biofilm (LCWB) model. The effect of a 630 nm LED, alone or plus 5-aminolevulinic acid (ALAD)-mediated photodynamic therapy (PDT) (ALAD-PDT), or an 880 nm LED on the GO (50 mg/l) action was evaluated by determining the CFU/mg reductions, live/dead analysis, scanning electron microscope observation, and reactive oxygen species assay. Among the LCWBs, the best effect was obtained with GO irradiated with ALAD-PDT, with percentages of CFU/mg reduction up to 78.96% ± 0.21 and 95.17% ± 2.56 for S. aureus and P. aeruginosa, respectively. The microscope images showed a reduction in the cell number and viability when treated with GO + ALAD-PDT. In addition, increased ROS production was detected. No differences were recorded when GO was irradiated with an 880 nm LED versus GO alone. The obtained results suggest that treatment with GO irradiated with ALAD-PDT represents a valid, sustainable strategy to counteract the polymicrobial colonization of chronic wounds.


Asunto(s)
Fotoquimioterapia , Staphylococcus aureus , Ácido Aminolevulínico/farmacología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Biopelículas , Grafito , Fotoquimioterapia/métodos , Pseudomonas aeruginosa
5.
J Mater Sci Mater Med ; 31(10): 84, 2020 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-32989624

RESUMEN

The aim of this study was to evaluate the interaction between Streptococcus oralis and Polyetheretherketone (PEEK), a novel material recently introduced in implantology. The topographical characterization and the Streptococcus oralis adhesion on this material were compared with other titanium surfaces, currently used for the production of dental implants: machined and double etched (DAE). The superficial micro-roughness of the PEEK discs was analyzed by scanning electron microscopy (SEM) and, the Energy Dispersive Spectrometer (EDS) analyzed their chemical composition. Atomic Force Microscopy (AFM) was used to characterize the micro-topography and the sessile method to evaluate the wettability of the samples. Microbiological analysis measured the colony forming units (CFUs), the biomass (OD570 detection) and the cell viability after 24 and 48 h after Streptococcus oralis cultivation on the different discs, that were previously incubated with saliva. Results showed that PEEK was characterized by a micro-roughness that was similar to machined titanium but at nano-level the nano-roughness was significantly higher in respect to the other samples. The EDS showed that PEEK superficial composition was characterized mainly by Carbonium and Oxygen. The hydrophilicity and wetting properties of PEEK were similar to machined titanium; on the contrary, double etched discs (DAE) samples were characterized by significantly higher levels (p < 0.05). PEEK was characterized by significant lower CFUs, biomass and viable cells in respect to the titanium surfaces. No differences were found between machined and DAE. The anti-adhesive and antibacterial properties showed by PEEK at 24 and 48 h against a pioneer such as S. oralis, could have an important role in the prevention of all pathologies connected with biofilm formation, like peri-implantitis in dentistry or prosthetic failures in orthopedics.


Asunto(s)
Benzofenonas/química , Implantes Dentales , Polímeros/química , Diseño de Prótesis , Streptococcus oralis/metabolismo , Titanio/química , Antibacterianos/farmacología , Adhesión Bacteriana , Biomasa , Carbono/química , Supervivencia Celular , Femenino , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Masculino , Ensayo de Materiales , Microscopía de Fuerza Atómica , Microscopía Electrónica de Rastreo , Oxígeno/química , Falla de Prótesis , Saliva/microbiología , Células Madre , Propiedades de Superficie , Humectabilidad
6.
Int J Mol Sci ; 21(21)2020 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-33167597

RESUMEN

This work aimed to compare the capability of Streptococcus oralis to adhere to a novel surface, double-etched titanium (DAE), in respect to machined and single-etched titanium. The secondary outcome was to establish which topographical features could affect the interaction between the implant surface and bacteria. The samples' superficial features were characterized using scanning electron microscopy (SEM) and energy dispersive x-ray spectrometry (EDS), and the wetting properties were tested through sessile methods. The novel surface, the double-etched titanium (DAE), was also analyzed with atomic force microscopy (AFM). S. oralis was inoculated on discs previously incubated in saliva, and then the colony-forming units (CFUs), biomass, and cellular viability were measured at 24 and 48h. SEM observation showed that DAE was characterized by higher porosity and Oxygen (%) in the superficial layer and the measurement of the wetting properties showed higher hydrophilicity. AFM confirmed the presence of a higher superficial nano-roughness. Microbiological analysis showed that DAE discs, coated by pellicle's proteins, were characterized by significantly lower CFUs at 24 and 48 h with respect to the other two groups. In particular, a significant inverse relationship was shown between the CFUs at 48 h and the values of the wetted area and a direct correlation with the water contact angle. The biomass at 24 h was slightly lower on DAE, but results were not significant concerning the other groups, both at 24 and 48 h. The DAE treatment not only modifies the superficial topography and increased hydrophilicity, but it also increases the Oxygen percentage in the superficial layer, which could contribute to the inhibition of S. oralis adhesion. DAE can be considered a promising treatment for titanium implants to counteract a colonization pioneer microorganism, such as S. oralis.


Asunto(s)
Adhesión Bacteriana/efectos de los fármacos , Implantes Dentales/microbiología , Streptococcus oralis/metabolismo , Titanio/química , Adhesivos/metabolismo , Bacterias/metabolismo , Adhesión Bacteriana/fisiología , Biopelículas/efectos de los fármacos , Materiales Biocompatibles Revestidos/química , Implantes Dentales/tendencias , Humanos , Microscopía de Fuerza Atómica/métodos , Microscopía Electrónica de Rastreo/métodos , Espectrometría por Rayos X/métodos , Streptococcus oralis/patogenicidad , Propiedades de Superficie/efectos de los fármacos
7.
J Antimicrob Chemother ; 74(4): 1069-1077, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30668729

RESUMEN

OBJECTIVES: To evaluate the in vitro antimicrobial/antivirulence action of bovine lactoferrin and its ability to synergize with levofloxacin against resistant Helicobacter pylori strains and to analyse the effect of levofloxacin, amoxicillin and esomeprazole with and without bovine lactoferrin as the first-line treatment for H. pylori infection. METHODS: The bovine lactoferrin antimicrobial/antivirulence effect was analysed in vitro by MIC/MBC determination and twitching motility against six clinical H. pylori strains and a reference strain. The synergism was evaluated using the chequerboard assay. The prospective therapeutic trial was carried out on two separate patient groups, one treated with esomeprazole/amoxicillin/levofloxacin and the other with esomeprazole/amoxicillin/levofloxacin/bovine lactoferrin. Treatment outcome was determined with the [13C]urea breath test. RESULTS: In vitro, bovine lactoferrin inhibited the growth of 50% of strains at 10 mg/mL and expressed 50% bactericidal effect at 40 mg/mL. The combination of levofloxacin and bovine lactoferrin displayed a synergistic effect for all strains, with the best MIC reduction of 16- and 32-fold for levofloxacin and bovine lactoferrin, respectively. Bovine lactoferrin at one-fourth MIC reduced microbial motility significantly for all strains studied. In the in vivo study, 6 of 24 patients recruited had treatment failure recorded with esomeprazole/amoxicillin/levofloxacin (75% success, 95% CI 57.68%-92.32%), and in the group with esomeprazole/amoxicillin/levofloxacin/bovine lactoferrin, 2 out of 53 patients recruited had failure recorded (96.07% success, 95% CI 90.62%-101.38%). CONCLUSIONS: Bovine lactoferrin can be considered a novel potentiator for restoring susceptibility in resistant H. pylori strains. Bovine lactoferrin added to a triple therapy in first-line treatment potentiates the therapeutic effect.


Asunto(s)
Antibacterianos/farmacología , Infecciones por Helicobacter/microbiología , Helicobacter pylori/efectos de los fármacos , Lactoferrina/farmacología , Levofloxacino/farmacología , Adulto , Anciano , Animales , Antibacterianos/uso terapéutico , Bovinos , Quimioterapia Combinada , Femenino , Genotipo , Infecciones por Helicobacter/tratamiento farmacológico , Helicobacter pylori/patogenicidad , Humanos , Lactoferrina/uso terapéutico , Levofloxacino/uso terapéutico , Masculino , Pruebas de Sensibilidad Microbiana , Persona de Mediana Edad , Inhibidores de la Bomba de Protones/farmacología , Adulto Joven
9.
Artículo en Inglés | MEDLINE | ID: mdl-29661876

RESUMEN

Chronic wounds represent an increasing problem worldwide. Graphene oxide (GO) has been reported to exhibit strong antibacterial activity toward both Gram-positive and Gram-negative bacteria. The aim of this work was to investigate the in vitro antimicrobial and antibiofilm efficacy of GO against wound pathogens. Staphylococcus aureus PECHA 10, Pseudomonas aeruginosa PECHA 4, and Candida albicans X3 clinical isolates were incubated with 50 mg/liter of GO for 2 and 24 h to evaluate the antimicrobial effect. Optical and atomic force microscopy images were performed to visualize the effect of GO on microbial cells. Moreover, the antibiofilm effect of GO was tested on biofilms, both in formation and mature. Compared to the respective time controls, GO significantly reduced the S. aureus growth both at 2 and 24 h in a time-dependent way, and it displayed a bacteriostatic effect in respect to the GO t = 0; an immediate (after 2 h) slowdown of bacterial growth was detected for P. aeruginosa, whereas a tardive effect (after 24 h) was recorded for C. albicans Atomic force microscopy images showed the complete wrapping of S. aureus and C. albicans with GO sheets, which explains its antimicrobial activity. Moreover, significant inhibition of biofilm formation and a reduction of mature biofilm were recorded for each detected microorganism. The antibacterial and antibiofilm properties of GO against chronic wound microorganisms make it an interesting candidate to incorporate into wound bandages to treat and/or prevent microbial infections.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Grafito/farmacología , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa/efectos de los fármacos
10.
Curr Microbiol ; 75(3): 336-342, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29247337

RESUMEN

In this study, the microbial contamination of smartphones from Italian University students was analyzed. A total of 100 smartphones classified as low, medium, and high emission were examined. Bacteria were isolated on elective and selective media and identified by biochemical tests. The mean values of cfu/cm2 were 0.79 ± 0.01; in particular, a mean of 1.21 ± 0.12, 0.77 ± 0.1 and 0.40 ± 0.10 cfu/cm2 was present on smartphones at low, medium, and high emission, respectively. The vast majority of identified microorganisms came from human skin, mainly Staphylococci, together with Gram-negative and positive bacilli and yeasts. Moreover, the main isolated species and their mixture were exposed for 3 h to turned on and off smartphones to evaluate the effect of the electromagnetic wave emission on the bacterial cultivability, viability, morphology, and genotypic profile in respect to the unexposed broth cultures. A reduction rate of bacterial growth of 79 and 46% was observed in Staphylococcus aureus and Staphylococcus epidermidis broth cultures, respectively, in the presence of turned on smartphone. No differences in viability were observed in all detected conditions. Small colony variants and some differences in DNA fingerprinting were detected on bacteria when the smartphones were turned on in respect to the other conditions. The colonization of smartphones was limited to human skin microorganisms that can acquire phenotype and genotypic modifications when exposed to microwave emissions.


Asunto(s)
Bacterias/aislamiento & purificación , Contaminación de Equipos/estadística & datos numéricos , Teléfono Inteligente , Adolescente , Bacterias/clasificación , Bacterias/genética , Bacterias/crecimiento & desarrollo , Recuento de Colonia Microbiana , Femenino , Humanos , Italia , Masculino , Teléfono Inteligente/instrumentación , Estudiantes , Universidades , Adulto Joven
11.
Phytother Res ; 32(3): 488-495, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29193368

RESUMEN

Curcumin, a phenolic compound extracted from Curcuma longa, exerts multiple pharmacological effects, including an antimicrobial action. Mycobacterium abscessus, an environmental, nontuberculous, rapidly growing mycobacterium, is an emerging human pathogen causing serious lung infections and one of the most difficult to treat, due to its multidrug resistance and biofilm-forming ability. We wanted to evaluate the antimicrobial and antivirulence activity of curcumin and its ability to synergize with antibiotics against a clinical M. abscessus strain (29904), isolated from the bronchoaspirate of a 66-year-old woman admitted to hospital for suspected tuberculosis. Curcumin [minimum inhibitory concentrations (MIC) = 128 mg/L] was synergic (fractional inhibitory concentration index ≤0.5) with amikacin, clarithromycin, ciprofloxacin, and linezolid, to which strain 29904 showed resistance/intermediate susceptibility. Curcumin at 1/8 × MIC significantly reduced motility, whereas at 4 × MIC, it completely inhibited 4- and 8-day mature biofilms. Synergistic combinations of curcumin and amikacin induced a general reduction in microbial aggregates and substantial loss in cell viability. Disruption of 4- and 8-day biofilms was the main effect detected when curcumin was the predominant compound. The present findings support previous evidence that curcumin is a potential antibiotic resistance breaker. Curcumin, either alone or combined with antibiotics, could provide a novel strategy to combat antibiotic resistance and virulence of M. abscessus.


Asunto(s)
Amicacina/uso terapéutico , Curcumina/uso terapéutico , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Mycobacterium abscessus/patogenicidad , Amicacina/farmacología , Curcumina/farmacología , Humanos , Infecciones por Mycobacterium no Tuberculosas/patología
12.
Environ Health Prev Med ; 22(1): 63, 2017 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-29165147

RESUMEN

BACKGROUND: Nowadays, the bacterial contamination in the hospital environment is of particular concern because the hospital-acquired infections (HAIs), also known as nosocomial infections, are responsible for significant morbidity and mortality. This work evaluated the capability of Enterococcus hirae to form biofilm on different surfaces and the action of two biocides on the produced biofilms. METHODS: The biofilm formation of E. hirae ATCC 10541 was studied on polystyrene and stainless steel surfaces through the biomass quantification and the cell viability at 20 and 37 °C. The effect of LH IDROXI FAST and LH ENZYCLEAN SPRAY biocides on biomasses was expressed as percentage of biofilm reduction. E. hirae at 20 and 37 °C produced more biofilm on the stainless steel in respect to the polystyrene surface. The amount of viable cells was greater at 20 °C than with 37 °C on the two analyzed surfaces. Biocides revealed a good anti-biofilm activity with the most effect for LH ENZYCLEAN SPRAY on polystyrene and stainless steel at 37 °C with a maximum biofilm reduction of 85.72 and 86.37%, respectively. RESULTS: E. hirae is a moderate biofilm producer depending on surface material and temperature, and the analyzed biocides express a remarkable antibiofilm action. CONCLUSION: The capability of E. hirae to form biofilm can be associated with its increasing incidence in hospital-acquired infections, and the adoption of suitable disinfectants is strongly recommended.


Asunto(s)
Biopelículas/efectos de los fármacos , Desinfectantes/farmacología , Enterococcus hirae/efectos de los fármacos , Enterococcus hirae/fisiología , Biopelículas/crecimiento & desarrollo , Concanavalina A , Infección Hospitalaria/microbiología , Infección Hospitalaria/prevención & control , Contaminación de Equipos/prevención & control , Equipos y Suministros de Hospitales , Humanos , Poliestirenos , Acero Inoxidable
13.
PLoS One ; 19(8): e0308211, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39088519

RESUMEN

The imbalance in skin microbiota is characterized by an increased number of pathogens in respect to commensal microorganisms. Starting from a skin microbiota collection, the aim of this work was to evaluate the possible role of Pomegranate (Punica granatum L.) Peel Extract (PPE) in restoring the skin microbiota balance acting on Staphylococcus spp. PPE was extracted following green methodology by using n-butane and the Dimethyl Ether (DME) solvents and analyzed for phytochemical composition and antimicrobial activity. The PPE antimicrobial action was evaluated against Gram +, Gram - bacteria and yeast reference strains and the most effective extract was tested against the main skin microbiota isolated strains. PPE extracted with DME showed the best antimicrobial action with MICs ranging from 1 to 128 mg/mL; the main active compounds were Catechin, Quercetin, Vanillic acid and Gallic acid. The PPE in DME anti-adhesive effect was examined against S. epidermidis and S. aureus mono and dual-species biofilm formation by biomass quantification and CFU/mL determination. The extract toxicity was evaluated by using Galleria mellonella larvae in vivo model. The extract displayed a significant anti-adhesive activity with a remarkable species-specific action at 4 and 8 mg/mL against S. epidermidis and S. aureus mono and dual-species biofilms. PPE in DME could represent an eco-sustainable non-toxic strategy to affect the Staphylococcal skin colonization in a species-specific way. The innovation of this work is represented by the reuse of food waste to balance skin microbiota.


Asunto(s)
Biopelículas , Pruebas de Sensibilidad Microbiana , Microbiota , Extractos Vegetales , Granada (Fruta) , Piel , Staphylococcus aureus , Staphylococcus epidermidis , Staphylococcus epidermidis/efectos de los fármacos , Granada (Fruta)/química , Piel/microbiología , Piel/efectos de los fármacos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Microbiota/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Biopelículas/efectos de los fármacos , Humanos , Animales , Antibacterianos/farmacología , Frutas/microbiología , Frutas/química
14.
Gels ; 10(2)2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38391440

RESUMEN

This study aimed to evaluate the ability of photodynamic therapy, based on the use of a gel containing 5% delta aminolaevulinic acid (ALAD) for 45' followed by irradiation with 630 nm LED (PDT) for 7', to eradicate Candida albicans strains without damaging the gingiva. C. albicans oral strains and gingival fibroblasts (hGFs) were used to achieve these goals. The potential antifungal effects on a clinical resistant C. albicans S5 strain were evaluated in terms of biofilm biomass, colony forming units (CFU/mL) count, cell viability by live/dead analysis, and fluidity membrane changes. Concerning the hGFs, viability assays, morphological analysis (optical, scanning electronic (SEM), and confocal laser scanning (CLSM) microscopes), and assays for reactive oxygen species (ROS) and collagen production were performed. ALAD-mediated aPDT (ALAD-aPDT) treatment showed significant anti-biofilm activity against C. albicans S5, as confirmed by a reduction in both the biofilm biomass and CFUs/mL. The cell viability was strongly affected by the treatment, while on the contrary, the fluidity of the membrane remained unchanged. The results for the hGFs showed an absence of cytotoxicity and no morphological differences in cells subjected to ALAD-aPDT expected for CLSM results that exhibited an increase in the thickening of actin filaments. ROS production was augmented only at 0 h and 3 h, while the collagen appeared enhanced 7 days after the treatment.

15.
Microbes Infect ; : 105384, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38944110

RESUMEN

Antimicrobial treatment of methicillin-resistant Staphylococcus pseudintermedius associated with canine wounds represents an important challenge. The aim of this study was to create a canine wound infection model, Lubbock Chronic Wound Biofilm (LCWB), with a focus on S. pseudintermedius, drawing inspiration from the established human model involving Staphylococcus aureus. Methicillin-resistant S. pseudintermedius 115 (MRSP) and Pseudomonas aeruginosa 700 strains, isolated from dog wounds, were used to set up the LCWB at 24, 48 and 72 h. The LCWBs were evaluated in terms of volume, weight, and microbial CFU/mg. The microbial spatial distribution in the LCWBs was assessed by SEM and CLSM imaging. The best incubation time for the LCWB production in terms of volume (3.38 cm3 ± 0.13), weight (0.86 gr ± 0.02) and CFU/mg (up to 7.05 × 106 CFU/mg ± 2.89 × 105) was 48 h. The SEM and CLSM images showed a major viable microbial colonization at 48 h with non-mixed bacteria with a prevalence of MRSP on the surface and P. aeruginosa 700 in the depth of the wound. The obtained findings demonstrate the capability of S. pseudintermedius to grow together P. aeruginosa in the LCWB model, representing the suitable model to reproduce the animal chronic wound in vitro.

16.
Antibiotics (Basel) ; 12(4)2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37107037

RESUMEN

This work aimed to evaluate and compare the antimicrobial actions and effects over time of eight types of mouthwash, based on the impact of chlorhexidine on the main microorganisms that are responsible for oral diseases: Enterococcus faecalis, Pseudomonas aeruginosa, and Candida albicans. The mouthwashes' antimicrobial action was determined in terms of their minimum inhibitory concentration (MIC), minimum bactericidal/fungicidal concentration (MBC/MFC), and time-kill curves at different contact times (10 s, 30 s, 60 s, 5 min, 15 min, 30 min, and 60 min), against selected oral microorganisms. All the mouthwashes showed a notable effect against C. albicans (MICs ranging from 0.02% to 0.09%), and higher MIC values were recorded with P. aeruginosa (1.56% to >50%). In general, the mouthwashes showed similar antimicrobial effects at reduced contact times (10, 30, and 60 s) against all the tested microorganisms, except with P. aeruginosa, for which the most significant effect was observed with a long time (15, 30, and 60 min). The results demonstrate significant differences in the antimicrobial actions of the tested mouthwashes, although all contained chlorhexidine and most of them also contained cetylpyridinium chloride. The relevant antimicrobial effects of all the tested mouthwashes, and those with the best higher antimicrobial action, were recorded by A-GUM® PAROEX®A and B-GUM® PAROEX®, considering their effects against the resistant microorganisms and their MIC values.

17.
Materials (Basel) ; 16(17)2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37687511

RESUMEN

Microbial adhesion on dental restorative materials may jeopardize the restorative treatment long-term outcome. The goal of this in vitro study was to assess Candida albicans capability to adhere and form a biofilm on the surface of heat-cured dental composites having different formulations but subjected to identical surface treatments and polymerization protocols. Three commercially available composites were evaluated: GrandioSO (GR), Venus Diamond (VD) and Enamel Plus HRi Biofunction (BF). Cylindrical specimens were prepared for quantitative determination of C. albicans S5 planktonic CFU count, sessile cells CFU count and biomass optical density (OD570 nm). Qualitative Concanavalin-A assays (for extracellular polymeric substances of a biofilm matrix) and Scanning Electron Microscope (SEM) analyses (for the morphology of sessile colonies) were also performed. Focusing on planktonic CFU count, a slight but not significant reduction was observed with VD as compared to GR. Regarding sessile cells CFU count and biomass OD570 nm, a significant increase was observed for VD compared to GR and BF. Concanavalin-A assays and SEM analyses confirmed the quantitative results. Different formulations of commercially available resin composites may differently interact with C. albicans. The present results showed a relatively more pronounced antiadhesive effect for BF and GR, with a reduction in sessile cells CFU count and biomass quantification.

18.
Sci Rep ; 13(1): 22067, 2023 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-38086849

RESUMEN

Novel technologies such as complex magnetic fields-CMFs represent an eco-sustainable proposal to counteract the infection associated to resistant microorganisms. The aim of this study was to evaluate the effect of two CMF programs (STRESS, ANTIBACTERIAL) against clinical antifungal resistant C. albicans also evaluating their uneffectiveness on gingival fibroblasts (hGFs). The STRESS program was more efficacious on C. albicans biofilm with up to 64.37% ± 10.80 of biomass and up to 99.19% ± 0.06 CFU/ml reductions in respect to the control also inducing an alteration of lipidic structure of the membrane. The MTT assay showed no CMFs negative effects on the viability of hGFs with a major ROS production with the ANTIBACTERIAL program at 3 and 24 h. For the wound healing assay, STRESS program showed the best effect in terms of the rate migration at 24 h, showing statistical significance of p < 0.0001. The toluidine-blue staining observations showed the typical morphology of cells and the presence of elongated and spindle-shaped with cytoplasmic extensions and lamellipodia was observed by SEM. The ANTIBACTERIAL program statistically increased the production of collagen with respect to control and STRESS program (p < 0.0001). CMFs showed a relevant anti-virulence action against C. albicans, no cytotoxicity effects and a high hGFs migration rate. The results of this study suggest that CMFs could represent a novel eco-sustainable strategy to counteract the resistant yeast biofilm infections.


Asunto(s)
Antifúngicos , Candida albicans , Humanos , Antifúngicos/farmacología , Antifúngicos/química , Fibroblastos , Biopelículas , Antibacterianos/farmacología
19.
Biomedicines ; 10(3)2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35327374

RESUMEN

The use of a new gel containing aminolevulinic acid and red light (ALAD-PDI) was tested in order to counteract bacterial biofilm growth on different titanium implant surfaces. The varying antibacterial efficacy of ALAD-PDI against biofilm growth on several titanium surfaces was also evaluated. A total of 60 titanium discs (30 machined and 30 double-acid etched, DAE) were pre-incubated with saliva and then incubated for 24 h with Streptococcus oralis to form bacterial biofilm. Four different groups were distinguished: two exposed groups (MACHINED and DAE discs), covered with S. oralis biofilm and subjected to ALAD + PDI, and two unexposed groups, with the same surfaces and bacteria, but without the ALAD + PDI (positive controls). Negative controls were non-inoculated discs alone and combined with the gel (ALAD) without the broth cultures. After a further 24 h of anaerobic incubation, all groups were evaluated for colony-forming units (CFUs) and biofilm biomass, imaged via scanning electron microscope, and tested for cell viability via LIVE/DEAD analysis. CFUs and biofilm biomass had significantly higher presence on unexposed samples. ALAD-PDI significantly decreased the number of bacterial CFUs on both exposed surfaces, but without any statistically significant differences among them. Live/dead staining showed the presence of 100% red dead cells on both exposed samples, unlike in unexposed groups. Treatment with ALAD + red light is an effective protocol to counteract the S. oralis biofilm deposited on titanium surfaces with different tomography.

20.
Materials (Basel) ; 15(5)2022 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-35269121

RESUMEN

Antibacterial and antibiofilm properties of restorative dental materials may improve restorative treatment outcomes. The aim of this in vitro study was to evaluate Streptococcus mutans capability to adhere and form biofilm on the surface of three commercially available composite resins (CRs) with different chemical compositions: GrandioSO (VOCO), Venus Diamond (VD), and Clearfil Majesty (ES-2). Disk-shaped specimens were manufactured by light-curing the CRs through two glass slides to maintain a perfectly standardized surface topography. Specimens were subjected to Planktonic OD600nm, Planktonic CFU count, Planktonic MTT, Planktonic live/dead, Adherent Bacteria CFU count, Biomass Quantification OD570nm, Adherent Bacteria MTT, Concanavalin A, and Scanning Electron Microscope analysis. In presence of VOCO, VD, and ES2, both Planktonic CFU count and Planktonic OD600nm were significantly reduced compared to that of control. The amount of Adherent CFUs, biofilm Biomass, metabolic activity, and extracellular polymeric substances were significantly reduced in VOCO, compared to those of ES2 and VD. Results demonstrated that in presence of the same surface properties, chemical composition might significantly influence the in vitro bacterial adhesion/proliferation on resin composites. Additional studies seem necessary to confirm the present results.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA