Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(15)2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37571720

RESUMEN

Electrical engines are becoming more common than thermal ones. Therefore, there is an increasing interest in the characterization of batteries and in measuring their state of charge, as an overestimation would cause the vehicle to run out of energy and an underestimation means that the vehicle is running in suboptimal conditions. This is of paramount importance for flying vehicles, as their endurance decreases with the increase in weight. This work aims at finding a novel empirical model for the discharge curve of an arbitrary number of battery pack cells, that uses as few tunable parameters as possible and hence is easy to adapt for every single battery pack needed by the operator. A suitable measurement setup for battery tests, which includes voltage and current sensors, has been developed and described. Tests are performed on both constant and variable power loads to investigate different real-world scenarios that are easy to reproduce. The main achievement of this novel model is indeed the ability to predict discharges at variable power based on a preliminary characterization performed at constant power. This leads to the possibility of rapidly tuning the model for each battery with promising accuracy. The results will show that the predicted discharged capacities of the model have a normalized error below 0.7%.

2.
Sensors (Basel) ; 23(4)2023 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-36850919

RESUMEN

In this paper, new features relevant to blood pressure (BP) estimation using photoplethysmography (PPG) are presented. A total of 195 features, including the proposed ones and those already known in the literature, have been calculated on a set composed of 50,000 pulses from 1080 different patients. Three feature selection methods, namely Correlation-based Feature Selection (CFS), RReliefF and Minimum Redundancy Maximum Relevance (MRMR), have then been applied to identify the most significant features for BP estimation. Some of these features have been extracted through a novel PPG signal enhancement method based on the use of the Maximal Overlap Discrete Wavelet Transform (MODWT). As a matter of fact, the enhanced signal leads to a reliable identification of the characteristic points of the PPG signal (e.g., systolic, diastolic and dicrotic notch points) by simple means, obtaining results comparable with those from purposely defined algorithms. For systolic points, mean and std of errors computed as the difference between the locations obtained using a purposely defined already known algorithm and those using the MODWT enhancement are, respectively, 0.0097 s and 0.0202 s; for diastolic points they are, respectively, 0.0441 s and 0.0486 s; for dicrotic notch points they are 0.0458 s and 0.0896 s. Hence, this study leads to the selection of several new features from the MODWT enhanced signal on every single pulse extracted from PPG signals, in addition to features already known in the literature. These features can be employed to train machine learning (ML) models useful for estimating systolic blood pressure (SBP) and diastolic blood pressure (DBP) in a non-invasive way, which is suitable for telemedicine health-care monitoring.


Asunto(s)
Algoritmos , Fotopletismografía , Humanos , Presión Sanguínea , Diástole , Frecuencia Cardíaca
3.
Sensors (Basel) ; 23(5)2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36904697

RESUMEN

The ion-sensitive field-effect transistor is a well-established electronic device typically used for pH sensing. The usability of the device for detecting other biomarkers in easily accessible biologic fluids, with dynamic range and resolution compliant with high-impact medical applications, is still an open research topic. Here, we report on an ion-sensitive field-effect transistor that is able to detect the presence of chloride ions in sweat with a limit-of-detection of 0.004 mol/m3. The device is intended for supporting the diagnosis of cystic fibrosis, and it has been designed considering two adjacent domains, namely the semiconductor and the electrolyte containing the ions of interest, by using the finite element method, which models the experimental reality with great accuracy. According to the literature explaining the chemical reactions that take place between the gate oxide and the electrolytic solution, we have concluded that anions directly interact with the hydroxyl surface groups and replace protons previously adsorbed from the surface. The achieved results confirm that such a device can be used to replace the traditional sweat test in the diagnosis and management of cystic fibrosis. In fact, the reported technology is easy-to-use, cost-effective, and non-invasive, leading to earlier and more accurate diagnoses.


Asunto(s)
Técnicas Biosensibles , Fibrosis Quística , Humanos , Cloruros/química , Sudoración , Potenciometría
4.
Sensors (Basel) ; 23(19)2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37837172

RESUMEN

In this paper, a machine learning (ML) approach to estimate blood pressure (BP) using photoplethysmography (PPG) is presented. The final aim of this paper was to develop ML methods for estimating blood pressure (BP) in a non-invasive way that is suitable in a telemedicine health-care monitoring context. The training of regression models useful for estimating systolic blood pressure (SBP) and diastolic blood pressure (DBP) was conducted using new extracted features from PPG signals processed using the Maximal Overlap Discrete Wavelet Transform (MODWT). As a matter of fact, the interest was on the use of the most significant features obtained by the Minimum Redundancy Maximum Relevance (MRMR) selection algorithm to train eXtreme Gradient Boost (XGBoost) and Neural Network (NN) models. This aim was satisfactorily achieved by also comparing it with works in the literature; in fact, it was found that XGBoost models are more accurate than NN models in both systolic and diastolic blood pressure measurements, obtaining a Root Mean Square Error (RMSE) for SBP and DBP, respectively, of 5.67 mmHg and 3.95 mmHg. For SBP measurement, this result is an improvement compared to that reported in the literature. Furthermore, the trained XGBoost regression model fulfills the requirements of the Association for the Advancement of Medical Instrumentation (AAMI) as well as grade A of the British Hypertension Society (BHS) standard.


Asunto(s)
Determinación de la Presión Sanguínea , Hipertensión , Humanos , Presión Sanguínea/fisiología , Hipertensión/diagnóstico , Aprendizaje Automático , Algoritmos , Fotopletismografía/métodos
5.
Sensors (Basel) ; 21(19)2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34640644

RESUMEN

In this paper a new low-cost stretchable coplanar capacitive sensor for liquid level sensing is presented. It has been 3D-printed by employing commercial thermoplastic polyurethane (TPU) and conductive materials and using a fused filament fabrication (FFF) process for monolithic fabrication. The sensor presents high linearity and good repeatability when measuring sunflower oil level. Experiments were performed to analyse the behaviour of the developed sensor when applying bending stimuli, in order to verify its flexibility, and a thermal characterization was performed in the temperature range from 10 °C to 40 °C to evaluate its effect on sunflower oil level measurement. The experimental results showed negligible sensitivity of the sensor to bending stimuli, whereas the thermal characterization produced a model describing the relationship between capacitance, temperature, and oil level, allowing temperature compensation in oil level measurement. The different temperature cycles allowed to quantify the main sources of uncertainty, and their effect on level measurement was evaluated.


Asunto(s)
Poliuretanos , Impresión Tridimensional , Capacidad Eléctrica , Conductividad Eléctrica , Temperatura
6.
Sensors (Basel) ; 20(17)2020 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-32878075

RESUMEN

Xylella fastidiosa (Xf) is a well-known bacterial plant pathogen mainly transmitted by vector insects and is associated with serious diseases affecting a wide variety of plants, both wild and cultivated; it is known that over 350 plant species are prone to Xf attack. In olive trees, it causes olive quick decline syndrome (OQDS), which is currently a serious threat to the survival of hundreds of thousands of olive trees in the south of Italy and in other countries in the European Union. Controls and countermeasures are in place to limit the further spreading of the bacterium, but it is a tough war to fight mainly due to the invasiveness of the actions that can be taken against it. The most effective weapons against the spread of Xf infection in olive trees are the detection of its presence as early as possible and attacks to the development of its vector insects. In this paper, image processing of high-resolution visible and multispectral images acquired by a purposely equipped multirotor unmanned aerial vehicle (UAV) is proposed for fast detection of Xf symptoms in olive trees. Acquired images were processed using a new segmentation algorithm to recognize trees which were subsequently classified using linear discriminant analysis. Preliminary experimental results obtained by flying over olive groves in selected sites in the south of Italy are presented, demonstrating a mean Sørensen-Dice similarity coefficient of about 70% for segmentation, and 98% sensitivity and 93% precision for the classification of affected trees. The high similarity coefficient indicated that the segmentation algorithm was successful at isolating the regions of interest containing trees, while the high sensitivity and precision showed that OQDS can be detected with a low relative number of both false positives and false negatives.


Asunto(s)
Olea , Xylella , Italia , Enfermedades de las Plantas
7.
Sensors (Basel) ; 20(4)2020 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-32053941

RESUMEN

In this paper we present a study of the repeatability of an innovative electromagnetic tracking system (EMTS) for surgical navigation, developed to overcome the state of the art of current commercial systems, allowing for the placement of the magnetic field generator far from the operating table. Previous studies led to the development of a preliminary EMTS prototype. Several hardware improvements are described, which result in noise reduction in both signal generation and the measurement process, as shown by experimental tests. The analysis of experimental results has highlighted the presence of drift in voltage components, whose effect has been quantified and related to the variation of the sensor position. Repeatability in the sensor position measurement is evaluated by means of the propagation of the voltage repeatability error, and the results are compared with the performance of the Aurora system (which represents the state of the art for EMTS for surgical navigation), showing a repeatability error about ten times lower. Finally, the proposed improvements aim to overcome the limited operating distance between the field generator and electromagnetic (EM) sensors provided by commercial EM tracking systems for surgical applications and seem to provide a not negligible technological advantage.


Asunto(s)
Fenómenos Electromagnéticos , Cirugía Asistida por Computador/métodos , Diseño de Equipo , Humanos , Imagen por Resonancia Magnética , Tomografía Computarizada por Rayos X
8.
Sensors (Basel) ; 19(10)2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-31096711

RESUMEN

Colonies of the endangered red sea pen Pennatula rubra (Cnidaria: Pennatulacea) sampled by trawling in the northwestern Mediterranean Sea were analyzed. Biometric parameters, such as total length, peduncle length, number of polyp leaves, fresh weight, and dry weight, were measured and related to each other by means of regression analysis. Ad hoc models for future inferencing of colonies size and biomass through visual techniques were individuated in order to allow a non-invasive study of the population structure and dynamics of P. rubra.


Asunto(s)
Cnidarios/fisiología , Especies en Peligro de Extinción , Dinámica Poblacional , Animales , Biomasa , Cnidarios/anatomía & histología , Mar Mediterráneo , Análisis de Regresión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA