Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Arch Pharm (Weinheim) ; : e2400165, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39054610

RESUMEN

Chronic wounds significantly impact the patients' quality of life, creating an urgent interdisciplinary clinical challenge. The development of novel agents capable of accelerating the healing process is essential. Caffeic acid phenethyl ester (CAPE) has demonstrated positive effects on skin regeneration. However, its susceptibility to degradation limits its pharmaceutical application. Chemical modification of the structure improves the pharmacokinetics of this bioactive phenol. Hence, two novel series of CAPE hybrids were designed, synthesized, and investigated as potential skin regenerative agents. To enhance the stability and therapeutic efficacy, a caffeic acid frame was combined with quinolines or isoquinolines by an ester (1a-f) or an amide linkage (2a-f). The effects on cell viability of human gingival fibroblasts (HGFs) and HaCaT cells were evaluated at different concentrations; they are not cytotoxic, and some proved to stimulate cell proliferation. The most promising compounds underwent a wound-healing assay in HGFs and HaCaT at the lowest concentrations. Antimicrobial antioxidant properties were also explored. The chemical and thermal stabilities of the best compounds were assessed. In silico predictions were employed to anticipate skin penetration capabilities. Our findings highlight the therapeutic potential of caffeic acid phenethyl ester (CAPE) derivatives 1a and 1d as skin regenerative agents, being able to stimulate cell proliferation, control bacterial growth, regulate ROS levels, and being thermally and chemically stable. An interesting structure-activity relationship was discussed to suggest a promising multitargeted approach for enhanced wound healing.

2.
Int J Mol Sci ; 24(9)2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37175903

RESUMEN

The use of large sized materials in drug delivery raises several challenges, including in vivo stability, poor bioavailability/solubility/absorption, and issues with target-specific delivery, in addition to the side effects of the delivered drugs [...].


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Nanopartículas , Humanos , Preparaciones Farmacéuticas , Nanotecnología , Disponibilidad Biológica , Sistemas de Liberación de Medicamentos , Solubilidad
3.
Int J Mol Sci ; 24(4)2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36834684

RESUMEN

Recently, there has been an increasing interest in finding new approaches to manage oral wound healing. Although resveratrol (RSV) exhibited many biological properties, such as antioxidant and anti-inflammatory activities, its use as a drug is limited by unfavorable bioavailability. This study aimed to investigate a series of RSV derivatives (1a-j) with better pharmacokinetic profiles. At first, their cytocompatibility at different concentrations was tested on gingival fibroblasts (HGFs). Among them, derivatives 1d and 1h significantly increased cell viability compared to the reference compound RSV. Thus, 1d and 1h were investigated for cytotoxicity, proliferation, and gene expression in HGFs, endothelial cells (HUVECs), and oral osteoblasts (HOBs), which are the main cells involved in oral wound healing. For HUVECs and HGFs, the morphology was also evaluated, while for HOBs ALP and mineralization were observed. The results showed that both 1d and 1h did not exert negative effects on cell viability, and at a lower concentration (5 µM) both even significantly enhanced the proliferative rate, compared to RSV. The morphology observations pointed out that the density of HUVECs and HGFs was promoted by 1d and 1h (5 µM) and mineralization was promoted in HOBs. Moreover, 1d and 1h (5 µM) induced a higher eNOS mRNA level in HUVECs, higher COL1 mRNA in HGFs, and higher OCN in HOBs, compared to RSV. The appreciable physicochemical properties and good enzymatic and chemical stability of 1d and 1h, along with their promising biological properties, provide the scientific basis for further studies leading to the development of RSV-based agents useful in oral tissue repair.


Asunto(s)
Células Endoteliales , Fibroblastos , Resveratrol/farmacología , Células Cultivadas , Fibroblastos/metabolismo , Cicatrización de Heridas , ARN Mensajero/metabolismo
4.
Int J Mol Sci ; 23(15)2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35897815

RESUMEN

The search for an innovative and effective drug delivery system that can carry and release targeted drugs with enhanced activity to treat Alzheimer's disease has received much attention in the last decade. In this study, we first designed a boron-based drug delivery system for effective treatment of AD by integrating the folic acid (FA) functional group into hexagonal boron nitride (hBN) nanoparticles (NPs) through an esterification reaction. The hBN-FA drug carrier system was assembled with a new drug candidate and a novel boron-based hybrid containing an antioxidant as BLA, to constitute a self-assembled AD nano transport system. We performed molecular characterization analyses by using UV-vis spectroscopy, Fourier transform infrared spectrophotometer (FTIR), scanning electron microscope (SEM), Energy-dispersive X-ray spectroscopy (EDS) and Zeta potential investigations. Second, we tested the anti-Alzheimer properties of the carrier system on a differentiated neuroblastoma (SHSY5-Y) cell line, which was exposed to beta-amyloid (1-42) peptides to stimulate an experimental in vitro AD model. Next, we performed cytotoxicity analyses of synthesized molecules on the human dermal fibroblast cell line (HDFa) and the experimental AD model. Cytotoxicity analyses showed that even higher concentrations of the carrier system did not enhance the toxicological outcome in HDFa cells. Drug loading analyses reported that uncoated hBN nano conjugate could not load the BLA, whereas the memantine loading capacity of hBN was 84.3%. On the other hand, memantine and the BLA loading capacity of the hBN-FA construct was found to be 95% and 97.5%, respectively. Finally, we investigated the neuroprotective properties of the nano carrier systems in the experimental AD model. According to the results, 25 µg/mL concentrations of hBN-FA+memantine (94% cell viability) and hBN-FA+BLA (99% cell viability) showed ameliorative properties against beta-amyloid (1-42) peptide toxicity (50% cell viability). These results were generated through the use of flow cytometry, acetylcholinesterase (AChE) and antioxidant assays. In conclusion, the developed drug carrier system for AD treatment showed promising potential for further investigations and enlightened neuroprotective capabilities of boron molecules to treat AD and other neurodegenerative diseases. On the other hand, enzyme activity, systematic toxicity analyses, and animal studies should be performed to understand neuroprotective properties of the designed carrier system comprehensively.


Asunto(s)
Enfermedad de Alzheimer , Nanopartículas , Acetilcolinesterasa , Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/metabolismo , Animales , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Boro , Compuestos de Boro , Portadores de Fármacos/uso terapéutico , Ácido Fólico/uso terapéutico , Humanos , Memantina/uso terapéutico , Nanopartículas/química
5.
Metab Brain Dis ; 35(6): 947-957, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32215836

RESUMEN

Parkinson's disease (PD) is one of the most aggressive neurodegenerative diseases and characterized by the loss of dopamine-sensitive neurons in the substantia nigra region of the brain. There is no any definitive treatment to completely cure PD and existing treatments can only ease the symptoms of the disease. Boron nitride nanoparticles have been extensively studied in nano-biological studies and researches showed that it can be a promising candidate for PD treatment with its biologically active unique properties. In the present study, it was aimed to investigate ameliorative effects of hexagonal boron nitride nanoparticles (hBNs) against toxicity of 1-methyl-4-phenylpyridinium (MPP+) in experimental PD model. Experimental PD model was constituted by application of MPP+ to differentiated pluripotent human embryonal carcinoma cell (Ntera-2, NT-2) culture in wide range of concentrations (0.62 to 2 mM). Neuroprotective activity of hBNs against MPP+ toxicity was determined by cell viability assays including MTT and LDH release. Oxidative alterations by hBNs application in PD cell culture model were investigated using total antioxidant capacity (TAC) and total oxidant status (TOS) tests. The impacts of hBNs and MPP+ on nuclear integrity were analyzed by Hoechst 33258 fluorescent staining method. Acetylcholinesterase (AChE) enzyme activities were determined by a colorimetric assay towards to hBNs treatment. Cell death mechanisms caused by hBNs and MPP+ exposure was investigated by flow cytometry analysis. Experimental results showed that application of hBNs increased cell viability in PD model against MPP+ application. TAS and TOS analysis were determined that antioxidant capacity elevated after hBNs applications while oxidant levels were reduced. Furthermore, flow cytometric analysis executed that MPP+ induced apoptosis was prevented significantly (p < 0.05) after application with hBNs. In a conclusion, the obtained results indicated that hBNs have a huge potential against MPP+ toxicity and can be used in PD treatment as novel neuroprotective agent and drug delivery system.


Asunto(s)
1-Metil-4-fenilpiridinio/toxicidad , Apoptosis/efectos de los fármacos , Compuestos de Boro/administración & dosificación , Nanopartículas/administración & dosificación , Fármacos Neuroprotectores/administración & dosificación , Trastornos Parkinsonianos/prevención & control , Apoptosis/fisiología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Relación Dosis-Respuesta a Droga , Humanos , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/patología
6.
Bioorg Med Chem Lett ; 29(2): 194-198, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30522955

RESUMEN

This study investigated the anti-inflammatory effects of novel pseudotripeptides (GPE 1-3) as potential candidates to counteract neuroinflammation processes in Alzheimer's disease. GPE 1-3 pseudotripeptides are synthetic derivatives of Gly-l-Pro-l-Glu (GPE), the N-terminal tripeptide of IGF-1, obtained through the introduction of isosteres of the amidic bond (aminomethylene unit) to increase the metabolic stability of the native tripeptide. The results showed that all synthetic derivatives possessed higher half-lives (t1/2 > 4 h) than GPE (t1/2 = 30 min) in human plasma and had good water solubility. The biological results demonstrated that GPE 1-3 had protective properties in several experimental models of treated THP-1 cells. Notably, the novel pseudotripeptides influenced inflammatory cytokine expression (IL-1ß, IL-18, and TNF-α) in Aß25-35-, PMA-, and LPS-treated THP-1 cells. In PMA-differentiated THP-1 macrophages, both GPE 1 and GPE 3 reduced the expression levels of all selected cyto-chemokines, even though GPE 3 showed the best neuroprotective properties.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Citocinas/antagonistas & inhibidores , Inflamación/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Oligopéptidos/farmacología , Enfermedad de Alzheimer/metabolismo , Citocinas/biosíntesis , Relación Dosis-Respuesta a Droga , Humanos , Inflamación/metabolismo , Estructura Molecular , Fármacos Neuroprotectores/química , Oligopéptidos/química , Relación Estructura-Actividad , Células THP-1
7.
Int Orthop ; 43(1): 71-75, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30284002

RESUMEN

PURPOSE: Bone remodeling around the femoral component after total hip arthroplasty (THA) is considered to be an important factor in long-term stability and seems to be strictly related to the stem design, coating, and fixation. Stress shielding, micro-movement, and high intra-articular fluid pressure might activate macrophages and osteoclasts, causing progressive bone density decreases. Here we analyze the bone mineral density (BMD) around a cementless femoral stem during a 20-year period to better understand the adaptive bone changes around such implants during long-term follow-up. METHODS: In this retrospective study, 14 patients treated by THA were reviewed from a cohort of 84. Clinical evaluation with Harris Hip Score and radiographic assessment were performed throughout a 20-year follow-up. To evaluate the bone remodeling around the stem, we monitored the femoral BMD in four regions of interest with a dual-energy X-ray absorptiometry (DEXA) post-operatively and at one, two, three, five and 20 years of follow-up. RESULTS: The main BMD changes between the post-operative examination and the 20-year follow-up varied between + 11.19% and + 24.30%. Patients with signs of loosening, low Harris Hip Scores, and pain showed decreasing BMD values. CONCLUSIONS: The correlation between the clinical result and BMD values could suggest DEXA results as a predictor of implant loosening or longevity.


Asunto(s)
Absorciometría de Fotón , Artroplastia de Reemplazo de Cadera , Densidad Ósea/fisiología , Remodelación Ósea/fisiología , Prótesis de Cadera/efectos adversos , Osteoartritis de la Cadera/fisiopatología , Anciano , Anciano de 80 o más Años , Femenino , Fémur/diagnóstico por imagen , Fémur/fisiopatología , Fémur/cirugía , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Osteoartritis de la Cadera/cirugía , Periodo Posoperatorio , Diseño de Prótesis , Falla de Prótesis , Estudios Retrospectivos
8.
Chemistry ; 22(2): 546-9, 2016 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-26493538

RESUMEN

Dispersions of single-walled carbon nanotubes (SWNTs) have been prepared by using the room-temperature ionic liquid [BMIM][BF4 ] (1-butyl-3-methylimidazolium tetrafluoroborate), the triblock copolymer Pluronic L121 [poly(ethylene oxide)5 -poly(propylene oxide)68 -poly(ethylene oxide)5 ] and the non-ionic surfactant Triton X-100 (TX100) in the pure state. The size of the SWNTs aggregates and the dispersion degree in the three viscous systems depend on the sonication time, as highlighted by UV/Vis/NIR spectroscopy and optical microscopy analysis. A nonlinear increase in conductivity can be observed as a function of the SWNTs loading, as suggested by electrochemical impedance spectroscopy. The generation of a three-dimensional network of SWNTs showing a viscoelastic gel-like behavior above a critical percolation concentration has been found at 25 °C in all the investigated systems by oscillatory rheology measurements.

9.
Bioorg Med Chem ; 24(14): 3149-56, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27262426

RESUMEN

We previously reported bifunctional sigma-1 (σ1) ligands endowed with antioxidant activity (1 and 2). In the present paper, pure enantiomers (R)-1 and (R)-2 along with the corresponding p-methoxy (6, 11), p-fluoro derivatives (7, 12) were synthesized. σ1 and σ2 affinities, antioxidant properties, and chemico-physical profiles were evaluated. Para derivatives, while maintaining strong σ1 affinity, displayed improved σ1 selectivity compared to the parent compounds 1 and 2. In vivo evaluation of compounds 1, 2, (R)-1, 7, and 12 showed σ1 agonist pharmacological profile. Chemico-physical studies revealed that amides 2, 11 and 12 were more stable than corresponding esters 1, 6 and 7 under our experimental conditions. Antioxidant properties were exhibited by fluoro derivatives 7 and 12 being able to increase total antioxidant capacity (TAC). Our results underline that p-substituents have an important role on σ1 selectivity, TAC, chemical and enzymatic stabilities. In particular, our data suggest that new very selective compounds 7 and 12 could be promising tools to investigate the disorders in which σ1 receptor dysfunction and oxidative stress are contemporarily involved.


Asunto(s)
Antioxidantes/farmacología , Receptores sigma/antagonistas & inhibidores , Animales , Espectroscopía de Resonancia Magnética con Carbono-13 , Células Cultivadas , Cromatografía Líquida de Alta Presión , Ligandos , Masculino , Espectrometría de Masas , Ratones , Espectroscopía de Protones por Resonancia Magnética , Ratas , Ratas Sprague-Dawley , Espectrofotometría Ultravioleta , Receptor Sigma-1
10.
Int J Mol Sci ; 17(7)2016 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-27376271

RESUMEN

Nonsteroidal anti-inflammatory drugs (NSAIDs) have been suggested for the potential treatment of neurodegenerative diseases, such as Alzheimer's disease (AD). Prolonged use of NSAIDs, however, produces gastrointestinal (GI) toxicity. To overcome this serious limitation, the aim of this study was to develop novel NSAID-derived drug conjugates (Anti-inflammatory-Lipoyl derivatives, AL4-9) that preserve the beneficial effects of NSAIDS without causing GI problems. As such, we conjugated selected well-known NSAIDs, such as (S)-naproxen and (R)-flurbiprofen, with (R)-α-lipoic acid (LA) through alkylene diamine linkers. The selection of the antioxidant LA was based on the proposed role of oxidative stress in the development and/or progression of AD. Our exploratory studies revealed that AL7 containing the diaminoethylene linker between (R)-flurbiprofen and LA had the most favorable chemical and in vitro enzymatic stability profiles among the synthesized compounds. Upon pretreatment, this compound exhibited excellent antioxidant activity in phorbol 12-miristate 13-acetate (PMA)-stimulated U937 cells (lymphoblast lung from human) and Aß(25-35)-treated THP-1 cells (leukemic monocytes). Furthermore, AL7 also modulated the expression of COX-2, IL-1ß and TNF-α in these cell lines, suggesting anti-inflammatory activity. Taken together, AL7 has emerged as a potential lead worthy of further characterization and testing in suitable in vivo models of AD.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Antiinflamatorios no Esteroideos/uso terapéutico , Péptidos beta-Amiloides/toxicidad , Antiinflamatorios no Esteroideos/química , Antioxidantes/química , Antioxidantes/farmacología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Estabilidad de Medicamentos , Flurbiprofeno/química , Expresión Génica/efectos de los fármacos , Humanos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Naproxeno/química , Fragmentos de Péptidos/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Acetato de Tetradecanoilforbol/toxicidad , Ácido Tióctico/química , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
11.
Mol Pharm ; 12(1): 66-74, 2015 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-25375771

RESUMEN

A novel cyclic prodrug of S-allyl-glutathione (CP11), obtained by using an acyloxy-alkoxy linker, was estimated for its pharmacokinetic and biological properties. The stability of CP11 was evaluated at pH 1.2, 7.4, in simulated fluids with different concentrations of enzymes, and in human plasma. The anti-inflammatory ability of CP11 was assessed in U937 cells, an immortalized human monocyte cell line. Results showed that CP11 is stable at acidic pH showing a possible advantage for oral delivery due to the longer permanence in the stomach. Having a permeability coefficient of 2.49 × 10(-6) cm s(-1), it was classified as discrete BBB-permeable compound. Biological studies revealed that CP11 is able to modulate inflammation mediated by LPS in U937 cells preventing the increase of ROS intracellular levels through interaction with the MAPK pathway.


Asunto(s)
Inhibidores Enzimáticos/química , Glutatión/química , Glutatión/síntesis química , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Profármacos/química , Especies Reactivas de Oxígeno/metabolismo , Permeabilidad de la Membrana Celular , Diseño de Fármacos , Evaluación Preclínica de Medicamentos , Humanos , Concentración de Iones de Hidrógeno , Lipopolisacáridos/química , Modelos Químicos , Monocitos/citología , Permeabilidad , Temperatura , Células U937
12.
Cell Mol Neurobiol ; 34(1): 101-11, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24105026

RESUMEN

Oxidative stress is highly damaging to cellular macromolecules and is also considered a main cause of the loss and impairment of neurons in several neurodegenerative disorders. Recent reports indicate that farnesene (FNS), an acyclic sesquiterpene, has antioxidant properties. However, little is known about the effects of FNS on oxidative stress-induced neurotoxicity. We used hydrogen peroxide (H2O2) exposure for 6 h to model oxidative stress. Therefore, this experimental design allowed us to explore the neuroprotective potential of different FNS isomers (α-FNS and ß-FNS) and their mixture (Mix-FNS) in H2O2-induced toxicity in newborn rat cerebral cortex cell cultures for the first time. For this aim, both MTT and lactate dehydrogenase assays were carried out to evaluate cell viability. Total antioxidant capacity (TAC) and total oxidative stress (TOS) parameters were used to assess oxidative alterations. In addition to determining of 8-hydroxy-2-deoxyguanosine (8-OH-dG) levels in vitro, the comet assay was also performed for measuring the resistance of neuronal DNA to H2O2-induced challenge. Our results showed that survival and TAC levels of the cells decreased, while TOS, 8-OH-dG levels and the mean values of the total scores of cells showing DNA damage (comet assay) increased in the group treated with H2O2 alone. But pretreatment of FNS suppressed the cytotoxicity, genotoxicity and oxidative stress, which were increased by H2O2 in clear type of isomers and applied concentration-dependent manners. The order of antioxidant effectiveness for modulating H2O2-induced oxidative stress-based neurotoxicity and genotoxicity is as ß-FNS > Mix-FNS > α-FNS.


Asunto(s)
Peróxido de Hidrógeno/toxicidad , Fármacos Neuroprotectores/farmacología , Neurotoxinas/toxicidad , Sesquiterpenos/farmacología , 8-Hidroxi-2'-Desoxicoguanosina , Animales , Antioxidantes/metabolismo , Muerte Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Corteza Cerebral/patología , Daño del ADN , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo , L-Lactato Deshidrogenasa/metabolismo , Neuronas/efectos de los fármacos , Neuronas/enzimología , Neuronas/patología , Fármacos Neuroprotectores/química , Estrés Oxidativo/efectos de los fármacos , Ratas , Sesquiterpenos/química
13.
Anticancer Agents Med Chem ; 24(1): 39-49, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37957910

RESUMEN

BACKGROUND: Glioblastoma multiforme (GBM) is probably the most malignant and aggressive brain tumor belonging to the class of astrocytomas. The considerable aggressiveness and high malignancy of GBM make it a tumor that is difficult to treat. Here, we report the synthesis and biological evaluation of eighteen novel cinnamoyl derivatives (3a-i and 4a-i) to obtain more effective antitumor agents against GBM. METHODS: The chemical structures of novel cinnamoyl derivatives (3a-i and 4a-i) were confirmed by NMR and MS analyses. The physicochemical properties and evaluation of the ADME profile of 3a-i and 4a-i were performed by the preADMETlab2.0 web program. Cinnamoyl derivatives 3a-i and 4a-i were tested in vitro for their cytotoxicity against the human healthy fibroblast (HDFa) cells using an MTT cell viability assay. Derivatives with no toxicity on HDFa cells were tested both on human glioblastoma (U87MG) and neuroblastoma (SHSY- 5Y) cells, chosen as an experimental model of brain tumors. Cell death mechanisms were analyzed by performing flow cytometry analyses. RESULTS: Cinnamoyl derivatives 3a-i and 4a-i showed good physicochemical and ADME properties suggesting that these compounds could be developed as oral drugs endowed with a high capability to cross the blood-brain barrier. Compounds (E)-1-methoxy-4-(2-(phenylsulfonyl)vinyl)benzene (2c) and (E)-N-benzyl-N-(2- (cyclohexylamino)-2-oxoethyl)-3-(3,4,5-trimethoxyphenyl)acrylamide (3e) did not show cytotoxicity on healthy human fibroblast cells up to 100 µg/mL. The most anticarcinogenic molecule, compound 3e, emerged as the most potent anticancer candidate in this study. Flow cytometry results showed that compound 3e (25 µg/mL) application resulted in nearly 86% and 84% cytotoxicity in the U87MG and the SHSY-5Y cell lines, respectively. Compound 2c (25 µg/mL) resulted in 81% and 82% cytotoxicity in the U87MG and the SHSY-5Y cell lines, respectively. CONCLUSION: Cinnamoyl derivative 3e inhibits the proliferation of cultured U87MG and SHSY-5Y cells by inducing apoptosis. Further detailed research will be conducted to confirm these data in in vivo experimental animal models.


Asunto(s)
Antineoplásicos , Glioblastoma , Neuroblastoma , Animales , Humanos , Línea Celular Tumoral , Apoptosis , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Supervivencia Celular , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/patología , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Proliferación Celular
14.
Int J Pharm ; 663: 124562, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39111351

RESUMEN

The aim of this study was the evaluation of suitability of novel mucoadhesive hydrogel platforms for the delivery of therapeutics useful for the management of disorders related to the gastrointestinal tract (GI). At this purpose, here we describe the preparation, the physicochemical characterization and drug delivery behaviour of novel hydrogels, based on self-assembling lipopeptides (MPD02-09), obtained by covalently conjugating lauric acid (LA) to SNA's peptide derivatives gotten by variously combining D- and L- amino acid residues. LA conjugation was aimed at improving the stability of the precursor peptides, obtaining amphiphilic structures, and triggering the hydrogels formation through the self-assembling. Budesonide (BUD), an anti-inflammatory drug, was selected as model because of its use in the treatment in GI disorders. Preliminary studies were performed to correlate the chemical structure of the conjugates with the key physicochemical properties of the materials for drug delivery. Two lipopeptides, MPD03 and MPD08, were found to form hydrogels (MPD03h and MPD08h, respectively) with characteristics suitable for drug delivery. These materials showed mucoadhesiveness of about 60 %. In vitro studies carried out with BUD loaded hydrogels showed about 70 % drug release within 6 h. Wound healing assessed in Caco-2 and HaCaT cells, showed reduction of cell-free area to values lower than 10 %. Taking together these results MPD03h and MPD08h have been shown to be excellent candidates for BUD delivery.


Asunto(s)
Budesonida , Preparaciones de Acción Retardada , Liberación de Fármacos , Hidrogeles , Hidrogeles/química , Humanos , Células CACO-2 , Budesonida/química , Budesonida/administración & dosificación , Cicatrización de Heridas/efectos de los fármacos , Antiinflamatorios/administración & dosificación , Antiinflamatorios/química , Lipopéptidos/química , Lipopéptidos/administración & dosificación , Ácidos Láuricos/química , Sistemas de Liberación de Medicamentos/métodos , Células HaCaT , Péptidos/química , Péptidos/administración & dosificación
15.
J Clin Med ; 13(17)2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39274418

RESUMEN

Coronary artery disease (CAD) is the leading global cause of mortality, accounting for approximately 30% of all deaths. It is primarily characterized by the accumulation of atherosclerotic plaques within the coronary arteries, leading to reduced blood flow to the heart muscle. Early detection of atherosclerotic plaques is crucial to prevent major adverse cardiac events. Notably, recent studies have shown that 15% of myocardial infarctions occur in patients with non-obstructive CAD, underscoring the importance of comprehensive plaque assessment beyond merely identifying obstructive lesions. Cardiac Computed Tomography Angiography (CCTA) has emerged as a cost-effective and efficient technique for excluding obstructive CAD, particularly in patients with a low-to-intermediate clinical likelihood of the disease. Recent advancements in CCTA technology, such as improved resolution and reduced scan times, have mitigated many technical challenges, allowing for precise quantification and characterization of both calcified and non-calcified atherosclerotic plaques. This review focuses on two critical physiological aspects of atherosclerotic plaques: the burden of calcifications, assessed via the coronary artery calcium score (CACs), and perivascular fat attenuation index (pFAI), an emerging marker of vascular inflammation. The CACs, obtained through non-contrast CT scans, quantifies calcified plaque burden and is widely used to stratify cardiovascular risk, particularly in asymptomatic patients. Despite its prognostic value, the CACs does not provide information on non-calcified plaques or inflammatory status. In contrast, the pFAI, derived from CCTA, serves as an indirect marker of coronary inflammation and has shown potential in predicting adverse cardiac events. Combining both CACs and pFAI assessment could offer a comprehensive risk stratification approach, integrating the established calcification burden with novel inflammatory markers to enhance CAD prevention and management strategies.

16.
Blood ; 117(11): 3065-75, 2011 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-21149635

RESUMEN

The early emergence of macrophages and their large pattern of tissue distribution during development suggest that they may play a critical role in the initial steps of embryogenesis. In the present study, we show that monocytic cells derived from human embryonic stem cells (hESCs) and from fetal liver follow a differentiation pathway different to that of adult cells, leading to specific functions. Embryonic and fetal monocytic cells differentiated from a CD14(low)CD16(-) precursor to form CD14(high)CD16(+) cells without producing the CD14(high)CD16(-) cell population that predominates in adult peripheral blood. Both demonstrated an enhanced expression of genes encoding tissue-degrading enzymes, chemokines, and scavenger receptors, as was previously reported for M2 macrophages. Compared with adult blood monocytes, embryonic and fetal monocytic cells secreted high amounts of proteins acting on tissue remodeling and angiogenesis, and most of them expressed the Tie2 receptor. Furthermore, they promoted vascular remodeling in xenotransplanted human tumors. These findings suggest that the regulation of human fetal and embryonic monocytic cell differentiation leads to the generation of cells endowed mainly with anti-inflammatory and remodeling functions. Trophic and immunosuppressive functions of M2-polarized macrophages link fetus and tumor development, and hESCs offer a valuable experimental model for in vitro studies of mechanisms sustaining these processes.


Asunto(s)
Diferenciación Celular , Células Madre Embrionarias/citología , Feto/citología , Homeostasis , Hígado/citología , Hígado/embriología , Monocitos/citología , Adulto , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Línea Celular , Citocinas/genética , Citocinas/metabolismo , Células Madre Embrionarias/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Humanos , Inflamación/patología , Receptores de Lipopolisacáridos/metabolismo , Macrófagos/citología , Macrófagos/metabolismo , Monocitos/metabolismo , Especificidad de Órganos/genética , Fenotipo , Receptores de IgG/metabolismo
17.
Chemistry ; 19(48): 16415-23, 2013 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-24151083

RESUMEN

Novel hydrogel phases based on positively charged and zwitterionic surfactants, namely, N-[p-(n-dodecyloxybenzyl)]-N,N,N-trimethylammonium bromide (pDOTABr) and p-dodecyloxybenzyldimethylamine oxide (pDOAO), which combine pristine carbon nanotubes (CNTs), were obtained, thus leading to stable dispersions and enhanced cross-linked networks. The composite hydrogel featuring a well-defined nanostructured morphology and an overall positively charged surface was shown to efficiently immobilise a polyanionic and redox-active tetraruthenium-substituted polyoxometalate (Ru4POM) by complementary charge interactions. The resulting hybrid gel has been characterised by electron microscopy techniques, whereas the electrostatic-directed assembly has been monitored by means of fluorescence spectroscopy and ζ-potential tests. This protocol offers a straightforward supramolecular strategy for the design of novel aqueous-based electrocatalytic soft materials, thereby improving the processability of CNTs while tuning their interfacial decoration with multiple catalytic domains. Electrochemical evidence confirms that the activity of the catalyst is preserved within the gel media.

18.
Gerontology ; 59(3): 250-60, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23428737

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is a frequent form of senile dementia. Neuroglobin (Ngb) has a neuroprotective role and decreases Aß peptide levels. Ngb, promoting Akt phosphorylation, activates cell survival involving cyclic-nucleotide response element-binding protein (CREB). A new molecule (IBU-LA) was synthetized and administered to an AD rat model to counteract AD progression. OBJECTIVE: The aim of this study was to investigate the IBU-LA-mediated induction of Ngb neuroprotective and antiapoptotic activities. METHODS: Brain morphology was analyzed through Bielschowsky staining, Aß(1-40) and Ngb expression by immunohistochemistry. Akt, p-Akt, CREB and p-CREB expression was evaluated by Western blot, apoptosis through cytochrome C/Apaf 1 immunocomplex formation, and TUNEL analysis. RESULTS: Bielschowsky staining and Aß(1-40) expression show few nerve connections and Aß(1-40) expression in an Aß sample, preserved neuronal cells and Aß(1-40) expression lowering in an IBU sample, mostly in IBU-LA. The Ngb level decreases in Aß samples, compared to control and IBU-LA samples. p-Akt/Akt and p-CREB/CREB ratios reveal a reduction in Aß sample, going back to the basal level in control and IBU-LA samples. Cytochrome C/Apaf 1 co-immunoprecipitate occurs and TUNEL-positive nuclei percentage decreases in Aß sample. Probe test performance shows an increased spatial reference memory in the IBU-LA compared to the Aß sample; no significant differences were seen between the IBU-LA and IBU samples. CONCLUSION: This evidence reveals that IBU-LA administration has the capability to maintain a high Ngb level allowing Ngb to perform a neuroprotective and antiapoptotic role, representing a valid tool in the therapeutic strategy of AD progression.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Globinas/metabolismo , Ibuprofeno/análogos & derivados , Proteínas del Tejido Nervioso/metabolismo , Fármacos Neuroprotectores/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Animales , Apoptosis/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Humanos , Ibuprofeno/farmacología , Masculino , Memoria/efectos de los fármacos , Neuroglobina , Fragmentos de Péptidos/metabolismo , Ratas , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Ácido Tióctico/farmacología
19.
Molecules ; 18(9): 10747-67, 2013 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-24005968

RESUMEN

Alzheimer's disease (AD) is characterized by irreversible and progressive loss of memory and cognition and profound neuronal loss. Current therapeutic strategies for the treatment of AD have been directed to a variety of targets with the aim of reversing or preventing the disease but, unfortunately, the available treatments often produce no significant clinical benefits. During the last decades compounds that inhibit or modulate γ-secretase, reducing ß amyloid (Aß) levels, have been considered as potential therapeutics for AD. Among these the (R)-enantiomer of flurbiprofen (FLU) seems to be very promising, but it shows low brain penetration. In this study, in order to improve the properties of FLU against Alzheimer's pathogenesis we synthesized some novel FLU lipophilic analogues. Lipophilicity of the new molecules has been characterized in terms of clogP, log K(C18/W) and log K(IAM/W) values. Permeability has been determined in both gastrointestinal PAMPA (PAMPA-GI) at different pH values and in brain blood barrier PAMPA (PAMPA-BBB) models. They were also tested for their ability to inhibit in vitro γ-secretase activity using rat CTXTNA2 astrocytes. Interestingly, the investigated molecules demonstrated to reduce Aß 42 levels without affecting the amyloid precursor protein APP level in a clear concentrations-dependent manner.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Antiinflamatorios no Esteroideos/síntesis química , Flurbiprofeno/análogos & derivados , Flurbiprofeno/síntesis química , Fragmentos de Péptidos/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Animales , Antiinflamatorios no Esteroideos/farmacología , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Barrera Hematoencefálica , Línea Celular , Células Cultivadas , Evaluación Preclínica de Medicamentos , Flurbiprofeno/farmacología , Humanos , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Membranas Artificiales , Modelos Biológicos , Permeabilidad , Ratas , Estereoisomerismo
20.
RSC Med Chem ; 14(11): 2315-2326, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38020070

RESUMEN

In this study, combining the thiazole and cinnamoyl groups into the styryl-thiazole scaffold, a series of novel styryl-thiazole hybrids (6a-p) was rationally designed, synthesized, and evaluated by the multi-target-directed ligands strategy as potential candidates for the treatment of Alzheimer's disease (AD). Hybrids 6e and 6i are the most promising among the synthesized hybrids since they are able to significantly increase cell viabilities in Aß1-42-exposed-human neuroblastoma cell line (6i at the concentration of 50 µg mL-1 and 6e at the concentration of 25 µg mL-1 resulted in ∼34% and ∼30% increase in cell viabilities, respectively). Compounds 6e and 6i exhibit highly AChE inhibitory properties in the experimental AD model at 375.6 ± 18.425 mU mL-1 and 397.6 ± 32.152 mU mL-1, respectively. Moreover, these data were also confirmed by docking studies and in vitro enzyme inhibition assays. Compared to hybrid 6e and according to the results, 6i also has the highest potential against Aß1-42 aggregation with over 80% preventive activity. The in silico prediction of the physicochemical properties confirms that 6i possesses a better profile compared to 6e. Therefore, compound 6i presents a promising multi-targeted active molecular profile for treating AD considering the multifactorial nature of AD, and it is reasonable to deepen its mechanisms of action in an in vivo experimental model of AD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA