Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Immunity ; 50(2): 317-333.e6, 2019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30683620

RESUMEN

Interleukin-1 (IL-1) signaling is important for multiple potentially pathogenic processes in the central nervous system (CNS), but the cell-type-specific roles of IL-1 signaling are unclear. We used a genetic knockin reporter system in mice to track and reciprocally delete or express IL-1 receptor 1 (IL-1R1) in specific cell types, including endothelial cells, ventricular cells, peripheral myeloid cells, microglia, astrocytes, and neurons. We found that endothelial IL-1R1 was necessary and sufficient for mediating sickness behavior and drove leukocyte recruitment to the CNS and impaired neurogenesis, whereas ventricular IL-1R1 was critical for monocyte recruitment to the CNS. Although microglia did not express IL-1R1, IL-1 stimulation of endothelial cells led to the induction of IL-1 in microglia. Together, these findings describe the structure and functions of the brain's IL-1R1-expressing system and lay a foundation for the dissection and identification of IL-1R1 signaling pathways in the pathogenesis of CNS diseases.


Asunto(s)
Encéfalo/inmunología , Neuroinmunomodulación/inmunología , Receptores Tipo I de Interleucina-1/inmunología , Transducción de Señal/inmunología , Animales , Astrocitos/citología , Astrocitos/inmunología , Astrocitos/metabolismo , Encéfalo/citología , Encéfalo/metabolismo , Línea Celular , Células Cultivadas , Células Endoteliales/efectos de los fármacos , Células Endoteliales/inmunología , Células Endoteliales/metabolismo , Interleucina-1/farmacología , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/citología , Microglía/inmunología , Microglía/metabolismo , Neuroinmunomodulación/genética , Neuronas/citología , Neuronas/inmunología , Neuronas/metabolismo , Receptores Tipo I de Interleucina-1/genética , Receptores Tipo I de Interleucina-1/metabolismo , Transducción de Señal/genética
2.
Eur J Immunol ; 54(1): e2250274, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37822141

RESUMEN

Spinal cord injury (SCI) affects hundreds of thousands of people in the United States, and while some effects of the injury are broadly recognized (deficits to locomotion, fine motor control, and quality of life), the systemic consequences of SCI are less well-known. The spinal cord regulates systemic immunological and visceral functions; this control is often disrupted by the injury, resulting in viscera including the gut, spleen, liver, bone marrow, and kidneys experiencing local tissue inflammation and physiological dysfunction. The extent of pathology depends on the injury level, severity, and time post-injury. In this review, we describe immunological and metabolic consequences of SCI across several organs. Since infection and metabolic disorders are primary reasons for reduced lifespan after SCI, it is imperative that research continues to focus on these deleterious aspects of SCI to improve life span and quality of life for individuals with SCI.


Asunto(s)
Calidad de Vida , Traumatismos de la Médula Espinal , Humanos , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , Inflamación , Médula Espinal/patología , Hígado/patología
3.
Mol Psychiatry ; 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459193

RESUMEN

Chronic stress is associated with increased anxiety, cognitive deficits, and post-traumatic stress disorder. Repeated social defeat (RSD) in mice causes long-term stress-sensitization associated with increased microglia activation, monocyte accumulation, and enhanced interleukin (IL)-1 signaling in endothelia and neurons. With stress-sensitization, mice have amplified neuronal, immune, and behavioral responses to acute stress 24 days later. This is clinically relevant as it shares key aspects with post-traumatic stress disorder. The mechanisms underlying stress-sensitization are unclear, but enhanced fear memory may be critical. The purpose of this study was to determine the influence of microglia and IL-1R1 signaling in neurons in the development of sensitization and increased fear memory after RSD. Here, RSD accelerated fear acquisition, delayed fear extinction, and increased cued-based freezing at 0.5 day. The enhancement in contextual fear memory after RSD persisted 24 days later. Next, microglia were depleted with a CSF1R antagonist prior to RSD and several parameters were assessed. Microglia depletion blocked monocyte recruitment to the brain. Nonetheless, neuronal reactivity (pCREB) and IL-1ß RNA expression in the hippocampus and enhanced fear memory after RSD were microglial-independent. Because IL-1ß RNA was prominent in the hippocampus after RSD even with microglia depletion, IL-1R1 mediated signaling in glutamatergic neurons was assessed using neuronal Vglut2+/IL-1R1-/- mice. RSD-induced neuronal reactivity (pCREB) in the hippocampus and enhancement in fear memory were dependent on neuronal IL-1R1 signaling. Furthermore, single-nuclei RNA sequencing (snRNAseq) showed that RSD influenced transcription in specific hippocampal neurons (DG neurons, CA2/3, CA1 neurons) associated with glutamate signaling, inflammation and synaptic plasticity, which were neuronal IL-1R1-dependent. Furthermore, snRNAseq data provided evidence that RSD increased CREB, BDNF, and calcium signaling in DG neurons in an IL-1R1-dependent manner. Collectively, increased IL-1R1-mediated signaling (monocytes/microglia independent) in glutamatergic neurons after RSD enhanced neuronal reactivity and fear memory.

5.
Mol Psychiatry ; 26(9): 4770-4782, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-32444870

RESUMEN

Chronic stress contributes to the development of psychiatric disorders including anxiety and depression. Several inflammatory-related effects of stress are associated with increased interleukin-1 (IL-1) signaling within the central nervous system and are mediated by IL-1 receptor 1 (IL-1R1) on several distinct cell types. Neuronal IL-1R1 is prominently expressed on the neurons of the dentate gyrus, but its role in mediating behavioral responses to stress is unknown. We hypothesize that IL-1 acts on this subset of hippocampal neurons to influence cognitive and mood alterations with stress. Here, mice subjected to psychosocial stress showed reduced social interaction and impaired working memory, and these deficits were prevented by global IL-1R1 knockout. Stress-induced monocyte trafficking to the brain was also blocked by IL-1R1 knockout. Selective deletion of IL-1R1 in glutamatergic neurons (nIL-1R1-/-) abrogated the stress-induced deficits in social interaction and working memory. In addition, viral-mediated selective IL-1R1 deletion in hippocampal neurons confirmed that IL-1 receptor in the hippocampus was critical for stress-induced behavioral deficits. Furthermore, selective restoration of IL-1R1 on glutamatergic neurons was sufficient to reestablish the impairments of social interaction and working memory after stress. RNA-sequencing of the hippocampus revealed that stress increased several canonical pathways (TREM1, NF-κB, complement, IL-6 signaling) and upstream regulators (INFγ, IL-1ß, NF-κB, MYD88) associated with inflammation. The inductions of TREM1 signaling, complement, and leukocyte extravasation with stress were reversed by nIL-1R1-/-. Collectively, stress-dependent IL-1R1 signaling in hippocampal neurons represents a novel mechanism by which inflammation is perpetuated and social interactivity and working memory are modulated.


Asunto(s)
Trastornos del Conocimiento , Receptores de Interleucina-1 , Animales , Cognición , Hipocampo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas , Receptores de Interleucina-1/genética , Receptores Tipo I de Interleucina-1 , Aislamiento Social , Estrés Psicológico , Receptor Activador Expresado en Células Mieloides 1
6.
Brain Behav Immun ; 81: 292-304, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31228609

RESUMEN

As a major producer of the inflammatory cytokine interleukin-1 (IL-1), peripheral macrophages can augment IL-1 expression via type 1 IL-1 receptor (IL-1R1) mediated autocrine self-amplification. In the CNS, microglial cells are the major producers of inflammatory cytokines, but express negligible levels of IL-1R1. In the present study, we showed CNS IL-1 induced microglial proinflammatory cytokine expression was mediated by endothelial, not microglial, IL-1R1. This paracrine mechanism was further dissected in vitro. IL-1 was unable to stimulate inflammatory cytokine expression directly from the microglial cell line BV-2, but it stimulated the brain endothelial cell line bEnd.3 to produce a factor(s) in the culture supernatant, which was capable of inducing inflammatory cytokine expression in BV-2. We termed this factor IL-1-induced microglial activation factors (IMAF). BV-2 cytokine expression was inducible by extracellular ATP, but IL-1 did not stimulate the release of ATP from bEnd.3 cells. Filtration of IMAF by size-exclusion membranes showed IMAF activity resided in molecules larger than 50 kd and incubation of IMAF at 95 °C for 5 min did not alter its activity. Microglial inhibitor minocycline was unable to block IMAF activity, even though it blocked LPS induced cytokine expression in BV-2 cells. Adding NF-κB inhibitor to the bEnd.3 cells abolished IL-1 induced cytokine expression in this bi-cellular system, but adding NF-κB inhibitor after IMAF is already produced failed to abrogate IMAF induced cytokine expression in BV-2 cells. RNA sequencing of IL-1 stimulated endothelial cells revealed increased expression of genes involved in the production and processing of hyaluronic acid (HA), suggesting HA as a candidate of IMAF. Inhibition of hyaluronidase by ascorbyl palmitate (AP) abolished IMAF-induced cytokine expression in BV-2 cells. AP administration in vivo also inhibited ICV IL-1-induced IL-1 expression in the hippocampus and hypothalamus. In vitro, either TLR2 or TLR4 inhibitors blocked IMAF induced BV-2 cytokine expression. In vivo, however, IL-1 induced cytokine expression persisted in either TLR2 or TLR4 knockouts. These results demonstrate IL-1 induced inflammatory cytokine expression in the CNS requires a bi-cellular system and HA could be a candidate for IMAF.


Asunto(s)
Citocinas/metabolismo , Inflamación/metabolismo , Interleucina-1/metabolismo , Animales , Línea Celular , Sistema Nervioso Central/inmunología , Sistema Nervioso Central/metabolismo , Citocinas/inmunología , Células Endoteliales/metabolismo , Regulación de la Expresión Génica/genética , Ácido Hialurónico/metabolismo , Proteínas I-kappa B/metabolismo , Interleucina-1/fisiología , Lipopolisacáridos/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo , FN-kappa B/metabolismo , Transducción de Señal/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo
8.
J Neurochem ; 139 Suppl 2: 136-153, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-26990767

RESUMEN

There is significant interest in understanding inflammatory responses within the brain and spinal cord. Inflammatory responses that are centralized within the brain and spinal cord are generally referred to as 'neuroinflammatory'. Aspects of neuroinflammation vary within the context of disease, injury, infection, or stress. The context, course, and duration of these inflammatory responses are all critical aspects in the understanding of these processes and their corresponding physiological, biochemical, and behavioral consequences. Microglia, innate immune cells of the CNS, play key roles in mediating these neuroinflammatory responses. Because the connotation of neuroinflammation is inherently negative and maladaptive, the majority of research focus is on the pathological aspects of neuroinflammation. There are, however, several degrees of neuroinflammatory responses, some of which are positive. In many circumstances including CNS injury, there is a balance of inflammatory and intrinsic repair processes that influences functional recovery. In addition, there are several other examples where communication between the brain and immune system involves neuroinflammatory processes that are beneficial and adaptive. The purpose of this review is to distinguish different variations of neuroinflammation in a context-specific manner and detail both positive and negative aspects of neuroinflammatory processes. In this review, we will use brain and spinal cord injury, stress, aging, and other inflammatory events to illustrate the potential harm and benefits inherent to neuroinflammation. Context, course, and duration of the inflammation are highly important to the interpretation of these events, and we aim to provide insight into this by detailing several commonly studied insults. This article is part of the 60th anniversary supplemental issue.


Asunto(s)
Envejecimiento/metabolismo , Encéfalo/metabolismo , Microglía/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Médula Espinal/metabolismo , Envejecimiento/patología , Animales , Encéfalo/patología , Humanos , Inflamación/metabolismo , Inflamación/patología , Microglía/patología , Enfermedades Neurodegenerativas/patología , Médula Espinal/patología
9.
Brain Behav Immun ; 54: 140-148, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26812118

RESUMEN

Peripheral inflammation can trigger a number of neuroinflammatory events in the CNS, such as activation of microglia and increases of proinflammatory cytokines. We have previously identified an interesting phenomenon, termed "euflammation", which can be induced by repeated subthreshold infectious challenges. Euflammation causes innate immune alterations without overt neuroimmune activation. In the current study, we examined the protective effect of euflammation against peripheral inflammation-induced neuroinflammation and the underlying mechanisms. When Escherichia coli or lipopolysaccharide (LPS) was injected inside or outside the euflammation induction locus (EIL), sickness behavior, global microglial activation, proinflammatory cytokine production in the brain, expression of endothelial cyclooxygenase II and induction of c-fos expression in the paraventricular nucleus of the hypothalamus were all attenuated in the euflammatory mice compared with those in the control unprimed mice. Euflammation also modulated innate immunity outside the EIL by upregulating receptors for pathogen-associated molecular patterns in spleen cells. In addition, euflammation attenuated CNS activation in response to an intra-airpouch (outside the EIL) injection of LPS without suppressing the cytokine expression in the airpouch. Collectively, our study demonstrates that signaling of peripheral inflammation to the CNS is modulated dynamically by peripheral inflammatory kinetics. Specifically, euflammation can offer effective protection against both bacterial infection and endotoxin induced neuroinflammation.


Asunto(s)
Encéfalo/inmunología , Inflamación/inmunología , Neuroinmunomodulación/inmunología , Animales , Encéfalo/metabolismo , Encéfalo/patología , Citocinas/metabolismo , Endotoxinas/farmacología , Hipotálamo/metabolismo , Inmunidad Innata/inmunología , Inmunidad Innata/fisiología , Inflamación/metabolismo , Lipopolisacáridos/farmacología , Masculino , Ratones , Microglía/metabolismo , Transducción de Señal , Bazo/metabolismo
10.
J Inflamm Res ; 15: 1617-1635, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35264870

RESUMEN

Purpose: Commensal microbes are impacted by stressor exposure and are known contributors to cognitive and social behaviors, but the pathways through which gut microbes influence stressor-induced behavioral changes are mostly unknown. A murine social stressor was used to determine whether host-microbe interactions are necessary for stressor-induced inflammation, including neuroinflammation, that leads to reduced cognitive and social behavior. Methods: C57BL/6 male mice were exposed to a paired fighting social stressor over a 1 hr period for 6 consecutive days. Y-maze and social interaction behaviors were tested following the last day of the stressor. Serum cytokines and lipopolysaccharide binding protein (LBP) were measured and the number and morphology of hippocampal microglia determined via immunohistochemistry. Intestinal mucous thickness and antimicrobial peptide expression were determined via fluorescent staining and real-time PCR (respectively) and microbial community composition was assessed using 16S rRNA gene amplicon sequencing. To determine whether the microbiota or the LBP receptor (CD14) are necessary for stressor-induced behavioral changes, experiments were performed in mice treated with a broad-spectrum antibiotic cocktail or in CD14-/- mice. Results: The stressor reduced Y-maze spontaneous alternations, which was accompanied by increased microglia in the hippocampus, increased circulating cytokines (eg, IL-6, TNF-α) and LBP, and reduced intestinal mucus thickness while increasing antimicrobial peptides and cytokines. These stressor-induced changes were largely prevented in mice given broad-spectrum antibiotics and in CD14-/- mice. In contrast, social stressor-induced alterations of social behavior were not microbe-dependent. Conclusion: Stressor-induced cognitive deficits involve enhanced bacterial interaction with the intestine, leading to low-grade, CD14-dependent, inflammation.

11.
Brain Behav Immun Health ; 26: 100547, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36388133

RESUMEN

Myriad findings connect stress and inflammation to mood disorders. Social defeat in mice promotes the convergence of neuronal, central inflammatory (microglia), and peripheral immune (monocytes) pathways causing anxiety, social avoidance, and "stress-sensitization." Stress-sensitization results in augmented inflammation and the recurrence of anxiety after re-exposure to social stress. Different cell compartments, including neurons, may be uniquely sensitized by social defeat-induced interleukin-1 (IL-1) signaling. Therefore, the aim of this study was to determine if glutamatergic neuronal IL-1 receptor signaling was essential in promoting stress-sensitization after social defeat. Here, wild-type (IL-1R1+/+) mice and mice with IL-1 receptor-1 deleted selectively in glutamatergic neurons (Vglut2-IL-1R1-/-) were stress-sensitized by social defeat (6-cycles) and then exposed to acute defeat (1-cycle) at day 30. Acute defeat-induced neuronal activation (ΔFosB and phospo-CREB) in the hippocampus of stress-sensitized mice was dependent on neuronal IL-1R1. Moreover, acute defeat-induced social withdrawal and working memory impairment in stress-sensitized mice were also dependent on neuronal IL-1R1. To address region and time dependency, an AAV2-IL-1 receptor antagonist construct was administered into the hippocampus after sensitization, but prior to acute defeat at day 30. Although stress-sensitized mice had increased hippocampal pCREB and decreased working memory after stress re-exposure, these events were not influenced by AAV2-IL-1 receptor antagonist. Hippocampal ΔFosB induction and corresponding social withdrawal in stress-sensitized mice after stress re-exposure were prevented by the AAV2-IL-1 receptor antagonist. Collectively, IL-1 signaling in glutamatergic neurons of the hippocampus was essential in neuronal-sensitization after social defeat and the recall of social withdrawal.

12.
J Inflamm Res ; 15: 1575-1590, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35282272

RESUMEN

Introduction: Lipopolysaccharide (LPS) preconditioning involves repeated, systemic, and sub-threshold doses of LPS, which induces a neuroprotective state within the CNS, thus preventing neuronal death and functional losses. Recently, proinflammatory cytokine, Interleukin-1 (IL-1), and its primary signaling partner, interleukin-1 receptor type 1 (IL-1R1), have been associated with neuroprotection in the CNS. However, it is still unknown how IL-1/IL-1R1 signaling impacts the processes associated with neuroprotection. Methods: Using our IL-1R1 restore genetic mouse model, mouse lines were generated to restrict IL-1R1 expression either to endothelia (Tie2-Cre-Il1r1r/r) or microglia (Cx3Cr1-Cre-Il1r1 r/r), in addition to either global ablation (Il1r1 r/r) or global restoration of IL-1R1 (Il1r1 GR/GR). The LPS preconditioning paradigm consisted of four daily i.p. injections of LPS at 1 mg/kg (4d LPS). 24 hrs following the final i.p. LPS injection, tissue was collected for qPCR analysis, immunohistochemistry, or FAC sorting. Results: Following 4d LPS, we found multiple phenotypes that are dependent on IL-1R1 signaling such as microglia morphology alterations, increased microglial M2-like gene expression, and clustering of microglia onto the brain vasculature. We determined that 4d LPS induces microglial morphological changes, clustering at the vasculature, and gene expression changes are dependent on endothelial IL-1R1, but not microglial IL-1R1. A novel observation was the induction of microglial IL-1R1 (mIL-1R1) following 4d LPS. The induced mIL-1R1 permits a unique response to central IL-1ß: the mIL-1R1 dependent induction of IL-1R1 antagonist (IL-1RA) and IL-1ß gene expression. Analysis of RNA sequencing datasets revealed that mIL-1R1 is also induced in neurodegenerative diseases. Discussion: Here, we have identified cell type-specific IL-1R1 mediated mechanisms, which may contribute to the neuroprotection observed in LPS preconditioning. These findings identify key cellular and molecular contributors in LPS-induced neuroprotection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA