RESUMEN
Retinitis pigmentosa (RP) is an inherited retinal dystrophy that causes progressive vision loss. The G56R mutation in NR2E3 is the second most common mutation causing autosomal dominant (ad) RP, a transcription factor that is essential for photoreceptor development and maintenance. The G56R variant is exclusively responsible for all cases of NR2E3-associated adRP. Currently, there is no treatment for NR2E3-related or, other, adRP, but genome editing holds promise. A pertinent approach would be to specifically knockout the dominant mutant allele, so that the wild type allele can perform unhindered. In this study, we developed a CRISPR/Cas strategy to specifically knockout the mutant G56R allele of NR2E3 and performed a proof-of-concept study in induced pluripotent stem cells (iPSCs) of an adRP patient. We demonstrate allele-specific knockout of the mutant G56R allele in the absence of off-target events. Furthermore, we validated this knockout strategy in an exogenous overexpression system. Accordingly, the mutant G56R-CRISPR protein was truncated and mis-localized to the cytosol in contrast to the (peri)nuclear localizations of wild type or G56R NR2E3 proteins. Finally, we show, for the first time, that G56R iPSCs, as well as G56R-CRISPR iPSCs, can differentiate into NR2E3-expressing retinal organoids. Overall, we demonstrate that G56R allele-specific knockout by CRISPR/Cas could be a clinically relevant approach to treat NR2E3-associated adRP.
Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Genes Dominantes/genética , Mutación/genética , Retinitis Pigmentosa/genética , Alelos , Animales , Secuencia de Bases , Células COS , Línea Celular , Chlorocebus aethiops , Edición Génica/métodos , Células HEK293 , Humanos , Células Madre Pluripotentes Inducidas/fisiología , Receptores Nucleares Huérfanos/genética , Retina/fisiologíaRESUMEN
: Inherited retinal dystrophies (IRDs) are a clinically and genetically heterogeneous group of diseases with more than 250 causative genes. The most common form is retinitis pigmentosa. IRDs lead to vision impairment for which there is no universal cure. Encouragingly, a first gene supplementation therapy has been approved for an autosomal recessive IRD. However, for autosomal dominant IRDs, gene supplementation therapy is not always pertinent because haploinsufficiency is not the only cause. Disease-causing mechanisms are often gain-of-function or dominant-negative, which usually require alternative therapeutic approaches. In such cases, genome-editing technology has raised hopes for treatment. Genome editing could be used to i) invalidate both alleles, followed by supplementation of the wild type gene, ii) specifically invalidate the mutant allele, with or without gene supplementation, or iii) to correct the mutant allele. We review here the most prevalent genes causing autosomal dominant retinitis pigmentosa and the most appropriate genome-editing strategy that could be used to target their different causative mutations.
Asunto(s)
Edición Génica/métodos , Terapia Genética/métodos , Retinitis Pigmentosa/terapia , Animales , Sistemas CRISPR-Cas , Humanos , Mutación , Retinitis Pigmentosa/genéticaRESUMEN
BACKGROUND: Human-induced pluripotent stem cell-derived retinal organoids are a valuable tool for disease modelling and therapeutic development. Many efforts have been made over the last decade to optimise protocols for the generation of organoids that correctly mimic the human retina. Most protocols use common media supplements; however, protocol-dependent variability impacts data interpretation. To date, the lack of a systematic comparison of a given protocol with or without supplements makes it difficult to determine how they influence the differentiation process and morphology of the retinal organoids. METHODS: A 2D-3D differentiation method was used to generate retinal organoids, which were cultured with or without the most commonly used media supplements, notably retinoic acid. Gene expression was assayed using qPCR analysis, protein expression using immunofluorescence studies, ultrastructure using electron microscopy and 3D morphology using confocal and biphoton microscopy of whole organoids. RESULTS: Retinoic acid delayed the initial stages of differentiation by modulating photoreceptor gene expression. At later stages, the presence of retinoic acid led to the generation of mature retinal organoids with a well-structured stratified photoreceptor layer containing a predominant rod population. By contrast, the absence of retinoic acid led to cone-rich organoids with a less organised and non-stratified photoreceptor layer. CONCLUSIONS: This study proves the importance of supplemented media for culturing retinal organoids. More importantly, we demonstrate for the first time that the role of retinoic acid goes beyond inducing a rod cell fate to enhancing the organisation of the photoreceptor layer of the mature organoid.
Asunto(s)
Células Madre Pluripotentes Inducidas , Organoides , Diferenciación Celular , Humanos , Organoides/metabolismo , Retina/metabolismo , Tretinoina/farmacologíaRESUMEN
We generated an induced pluripotent stem cell (iPSC) line using dermal fibroblasts from a 53â¯year-old patient with autosomal dominant cone-rod dystrophy (CRD) caused by a missense mutation, c.121Câ¯>â¯T, in the CRX gene. Patient fibroblasts were reprogrammed using the non-integrative Sendai virus reprogramming system and the human OSKM transcription factor cocktail. The generated iPSCs contained the congenital mutation in exon 3 of CRX and were pluripotent and genetically stable. This iPSC line will be an important tool for retinal differentiation studies to better understand the CRD phenotype caused by the mutant p.Arg41Trp CRX protein.
Asunto(s)
Técnicas de Reprogramación Celular , Distrofias de Conos y Bastones , Fibroblastos/metabolismo , Proteínas de Homeodominio , Células Madre Pluripotentes Inducidas/metabolismo , Mutación Missense , Transactivadores , Sustitución de Aminoácidos , Línea Celular , Distrofias de Conos y Bastones/genética , Distrofias de Conos y Bastones/metabolismo , Distrofias de Conos y Bastones/patología , Fibroblastos/patología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/patología , Masculino , Persona de Mediana Edad , Transactivadores/genética , Transactivadores/metabolismoRESUMEN
3D hepatic microtissues can serve as valuable liver analogues for cell-based therapies and for hepatotoxicity screening during preclinical drug development. However, hepatocytes rapidly dedifferentiate in vitro, and typically require 3D culture systems or co-cultures for phenotype rescue. In this work we present a novel microencapsulation strategy, utilizing coaxial flow-focusing droplet microfluidics to fabricate microcapsules with liquid core and poly(ethylene glycol) (PEG) gel shell. When entrapped inside these capsules, primary hepatocytes rapidly formed cell-cell contacts and assembled into compact spheroids. High levels of hepatic function were maintained inside the capsules for over ten days. The microencapsulation approach described here is compatible with difficult-to-culture primary epithelial cells, allows for tuning gel mechanical properties and diffusivity, and may be used in the future for high density suspension cell cultures. STATEMENT OF SIGNIFICANCE: Our paper combines an interesting new way for making capsules with cultivation of difficult-to-maintain primary epithelial cells (hepatocytes). The microcapsules described here will enable high density suspension culture of hepatocytes or other cells and may be used as building blocks for engineering tissues.