Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Virol J ; 21(1): 48, 2024 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-38395943

RESUMEN

BACKGROUND: The antiviral properties of metal nanoparticles against various viruses, including those resistant to drugs, are currently a subject of intensive research. Recently, the green synthesis of nanoparticles and their anti-viral function have attracted a lot of attention. Previous studies have shown promising results in the use of Arabic gum for the green synthesis of nanoparticles with strong antiviral properties. In this study we aimed to investigate the antiviral effects of MnO2 nanoparticles (MnO2-NPs) synthesized using Arabic gum, particularly against the influenza virus. METHODS: Arabic gum was used as a natural polymer to extract and synthesize MnO2-NPs using a green chemistry approach. The synthesized MnO2-NPs were characterized using SEM and TEM. To evaluate virus titration, cytotoxicity, and antiviral activity, TCID50, MTT, and Hemagglutination assay (HA) were performed, respectively. Molecular docking studies were also performed to investigate the potential antiviral activity of the synthesized MnO2-NPs against the influenza virus. The molecular docking was carried out using AutoDock Vina software followed by an analysis with VMD software to investigate the interaction between Arabic gum and the hemagglutinin protein. RESULTS: Simultaneous combination treatment with the green-synthesized MnO2-NPs resulted in a 3.5 log HA decrement and 69.7% cellular protection, which demonstrated the most significant difference in cellular protection compared to the virus control group (p-value < 0.01). The docking results showed that binding affinities were between - 3.3 and - 5.8 kcal/mole relating with the interaction between target with MnO2 and beta-D-galactopyranuronic acid, respectively. CONCLUSION: The results of the study indicated that the MnO2-NPs synthesized with Arabic gum had significant antiviral effects against the influenza virus, highlighting their potential as a natural and effective treatment for inhibition of respiratory infections.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , Nanopartículas del Metal , Humanos , Gripe Humana/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Compuestos de Manganeso/farmacología , Óxidos/farmacología , Nanopartículas del Metal/química , Antivirales/farmacología
2.
Semin Cancer Biol ; 86(Pt 2): 1076-1085, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-34375725

RESUMEN

Plant virus nanoparticles (PVNPs) have inherent immune stimulatory ability, and have been investigated as immune adjuvants to stimulate an anti-tumor immune response. The combination of immune stimulation, nanoparticle structure and the ability to deliver other therapeutic molecules provides a flexible platform for cancer immunotherapy. Researching multifunctional PVNPs and their modification will generate novel reagents for cancer immunotherapy. Here we review the properties of PVNPs, and their potential for clinical utilization to activate anti-tumor innate and lymphoid immune responses. PVNPs have potential utility for cancer immunotherapy as vaccine adjuvant, and delivery systems for other reagents as mono immunotherapy or combined with other immunotherapies. This review outlines the potential and challenges in developing PVNPs as cancer immunotherapy reagents.


Asunto(s)
Vacunas contra el Cáncer , Nanopartículas , Neoplasias , Virus de Plantas , Humanos , Inmunoterapia , Neoplasias/terapia , Nanopartículas/química , Factores Inmunológicos , Vacunas contra el Cáncer/uso terapéutico
3.
Environ Res ; 238(Pt 1): 117132, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37714365

RESUMEN

M13 phages possessing filamentous phage genomes offer the benefits of selective display of molecular moieties and delivery of therapeutic agent payloads with a tolerable safety profile. M13 phage-displayed technology for resembling antigen portions led to the discovery of mimetic epitopes that applied to antibody-based therapy and could be useful in the design of anticancer vaccines. To date, the excremental experiences have engaged the M13 phage in the development of innovative biosensors for detecting biospecies, biomolecules, and human cells with an acceptable limit of detection. Addressing the emergence of antibiotic-resistant bacteria, M13 phages are potent for packaging the programmed gene editing tools, such as CRISPR/Cas, to target multiple antimicrobial genes. Moreover, their display potential in combination with nanoparticles inspires new approaches for engineering targeted theragnostic platforms targeting multiple cellular biomarkers in vivo. In this review, we present the available data on optimizing the use of bacteriophages with a focus on the to date experiences with M13 phages, either as monoagent or as part of combination regimens in the practices of biosensors, vaccines, bactericidal, modeling of specific antigen epitopes, and phage-guided nanoparticles for drug delivery systems. Despite increasing research interest, a deep understanding of the underlying biological and genetic behaviors of M13 phages is needed to enable the full potential of these bioagents in biomedicine, as discussed here. We also discuss some of the challenges that have thus far limited the development and practical marketing of M13 phages.


Asunto(s)
Bacteriófago M13 , Vacunas , Humanos , Bacteriófago M13/genética , Preparaciones Farmacéuticas , Terapia Genética , Epítopos
4.
Funct Integr Genomics ; 22(6): 1073-1088, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36264397

RESUMEN

Colorectal cancer (CRC) is one of the most frequent cancers leading to death worldwide. Different signaling pathways such as the canonical Wnt signaling pathway have many effects on the development of CRC. MicroRNAs are small non-coding RNAs and different evidence represent their importance in the development of cancer via regulating the expression of their target genes. miRNAs can affect CRC progression as oncogenes or tumor suppressors. Dysregulation in miRNA expression can occur for various reasons, causes different abnormalities in the Wnt signaling pathway, and contributes to CRC development. Identifying the exact interactions between microRNAs and mRNAs or other non-coding RNAs assists in designing effective therapeutic, diagnostic, and prognostic approaches. In this review, we aim to focus on microRNAs that regulate CRC through modulating the Wnt pathway and then present the perspective outlook on the implication of miRNA in liquid biopsy for the management of patients with CRC.


Asunto(s)
Neoplasias Colorrectales , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Vía de Señalización Wnt/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , ARN Mensajero
5.
Bioprocess Biosyst Eng ; 45(12): 1905-1917, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36269380

RESUMEN

Recent studies demonstrated that the speed of synthesis, biocompatibility, and antimicrobial activity of gold (Au) and silver (Ag) metals is enhanced when biosynthesized in nano-sized particles. In the present study, Au- and Ag-based nanoparticles (NPs) were synthesized via a biological process using aqueous Ginger root extract and characterized by various spectroscopic methods. The NPs have hexagonal and spherical shapes. The average particle size for Au and Ag NPs was 20 and 15 nm, respectively. The dynamic light scattering (DLS) technique has shown that the zeta potential values of synthesized NPs were 4.8 and - 7.11 mv, respectively. Gas chromatography-mass spectrometry (GC-MS) analysis of Ginger root extract revealed 25 compounds. The synthesized NPs showed significant activity against Staphylococcus aureus and Escherichia (E). coli in vitro, with IC50 and IC90 values for Au and Ag NPs, respectively, noted to be 7.5 and 7.3 µg/ml and 15 and 15.2 µg/ml for both bacterial strains. The protein leakage level was tremendous and morphological changes occurred in bacteria treated with biosynthesized NPs. These results suggest that the biosynthesized metallic NPs have the suitable potential for application as antibacterial agents with enhanced activities.


Asunto(s)
Nanopartículas del Metal , Zingiber officinale , Oro/farmacología , Oro/química , Plata/química , Nanopartículas del Metal/química , Zingiber officinale/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antibacterianos/química , Bacterias/metabolismo , Pruebas de Sensibilidad Microbiana
6.
Cancer Cell Int ; 21(1): 470, 2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-34488747

RESUMEN

Understanding the molecular mechanisms of cancer biology introduces targeted therapy as a complementary method along with other conventional therapies. Recombinant immunotoxins are tumor specific antibodies that their recognizing fragment is utilized for delivering modified toxins into tumor cells. These molecules have been considered as a targeted strategy in the treatment of human cancers. HER2 tumor biomarker is a transmembrane tyrosine kinase receptor that can be used for targeted therapies in the forms of anti-HER2 monoclonal antibodies, antibody-drug conjugates and immunotoxins. There have been many studies on HER2-based immunotoxins in recent years, however, little progress has been made in the clinical field which demanded more improvements. Here, we summarized the HER2 signaling and it's targeting using immunotherapeutic agents in human cancers. Then, we specifically reviewed anti-HER2 immunotoxins, and their strengths and drawbacks to highlight their promising clinical impact.

7.
Cancer Cell Int ; 21(1): 100, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33568147

RESUMEN

BACKGROUND: The expansion and metastasis of colorectal cancers are closely associated with the dynamic growth of cancer stem cells (CSCs). This study aimed to explore the possible effect of LXR (a regulator of glycolysis and lipid hemostasis) in the tumorgenicity of human colorectal CD133 cells. METHODS: Human HT-29 CD133+ cells were enriched by MACS and incubated with LXR agonist (T0901317) and antagonist (SR9243) for 72 h. Cell survival was evaluated using MTT assay and flow cytometric analysis of Annexin-V. The proliferation rate was measured by monitoring Ki-67 positive cells using IF imaging. The modulation of LXR was studied by monitoring the activity of all factors related to ABC transporters using real-time PCR assay and western blotting. Protein levels of metabolic enzymes such as PFKFB3, GSK3ß, FASN, and SCD were also investigated upon treatment of CSCs with LXR modulators. The migration of CSCs was monitored after being exposed to LXR agonist using scratch and Transwell insert assays. The efflux capacity was measured using hypo-osmotic conditions. The intracellular content of reactive oxygen species was studied by DCFH-DA staining. RESULTS: Data showed incubation of CSCs with T0901317 and SR9243 reduced the viability of CD133 cells in a dose-dependent manner compared to the control group. The activation of LXR up-regulated the expression and protein levels of ABC transporters (ABCA1, ABCG5, and ABCG8) compared to the non-treated cells (p < 0.05). Despite these effects, LXR activation suppressed the proliferation, clonogenicity, and migration of CD133 cells, and increased hypo-osmotic fragility (p < 0.05). We also showed that SR9243 inhibited the proliferation and clonogenicity of CD133 cells through down-regulating metabolic enzymes PFKFB3, GSK3ß, FASN, and SCD as compared with the control cells (p < 0.05). Intracellular ROS levels were increased after the inhibition of LXR by SR9243 (p < 0.05). Calling attention, both T0901317 and SR9243 compounds induced apoptotic changes in cancer stem cells (p < 0.05). CONCLUSIONS: The regulation of LXR activity can be considered as a selective targeting of survival, metabolism, and migration in CSCs to control the tumorigenesis and metastasis in patients with advanced colorectal cancers.

8.
Adv Funct Mater ; 30(19)2020 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-34093104

RESUMEN

Although considerable efforts have been conducted to diagnose, improve, and treat cancer in the past few decades, existing therapeutic options are insufficient, as mortality and morbidity rates remain high. Perhaps the best hope for substantial improvement lies in early detection. Recent advances in nanotechnology are expected to increase the current understanding of tumor biology, and will allow nanomaterials to be used for targeting and imaging both in vitro and in vivo experimental models. Owing to their intrinsic physicochemical characteristics, nanostructures (NSs) are valuable tools that have received much attention in nanoimaging. Consequently, rationally designed NSs have been successfully employed in cancer imaging for targeting cancer-specific or cancer-associated molecules and pathways. This review categorizes imaging and targeting approaches according to cancer type, and also highlights some new safe approaches involving membrane-coated nanoparticles, tumor cell-derived extracellular vesicles, circulating tumor cells, cell-free DNAs, and cancer stem cells in the hope of developing more precise targeting and multifunctional nanotechnology-based imaging probes in the future.

10.
Virol J ; 17(1): 64, 2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32370750

RESUMEN

BACKGROUND: Human papillomavirus (HPV)-associated malignancy remain a main cause of cancer in men and women. Cancer immunotherapy has represented great potential as a new promising cancer therapeutic approach. Here, we report Mesenchymal stem cells (MSCs) as a carrier for the delivery of oncolytic Newcastle disease virus (NDV) for the treatment of HPV-associated tumor. METHODS: For this purpose, MSCs obtained from the bone marrow of C57BL mice, then cultured and characterized subsequently by the flow cytometry analysis for the presence of cell surface markers. In this study, we sought out to determine the impacts of MSCs loaded with oncolytic NDV on splenic T cell and cytokine immune responses, caspase-3 and -9 expression, and myeloid and myeloid-derived suppressor cells (MDSCs) by histological and immunohistochemical studies in the tumor microenvironment (TME). RESULTS: Our findings proved that MSCs possess both migratory capacity and tumor tropism toward transplanted tumor tissue after peritumoral administration. Tumor therapy experiments indicated that oncolytic NDV delivered by MSCs-engineered system significantly reduces tumor growth, which is associated with the enhancement of E7-specific lymphocyte proliferation, CD8+ T cell cytolysis responses, and splenic IFN-γ, IL-4 and IL-12 responses compared with control groups. Moreover, the treatment upregulated the concentration of apoptotic proteins (caspase 9) and increased infiltration of tumor microenvironment with CD11b + myeloid and Gr1 + MDSCs cells. CONCLUSIONS: Our data suggest MSCs carrying oncolytic NDV as a potentially effective strategy for cancer immunotherapy through inducing splenic Th1 immune responses and apoptosis in the tumor microenvironment.


Asunto(s)
Células Madre Mesenquimatosas/virología , Neoplasias/terapia , Virus de la Enfermedad de Newcastle/fisiología , Virus Oncolíticos/fisiología , Microambiente Tumoral , Animales , Caspasas/genética , Muerte Celular , Línea Celular Tumoral , Citocinas/inmunología , Femenino , Papillomavirus Humano 16/patogenicidad , Ratones , Ratones Endogámicos C57BL , Neoplasias/virología , Viroterapia Oncolítica/métodos , Linfocitos T/inmunología
11.
Biotechnol Bioeng ; 117(4): 1204-1229, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31840797

RESUMEN

Thanks to the synthetic biology, the laborious and restrictive procedure for producing a target protein in living microorganisms by biotechnological approaches can now experience a robust, pliant yet efficient alternative. The new system combined with lab-on-chip microfluidic devices and nanotechnology offers a tremendous potential envisioning novel cell-free formats such as DNA brushes, hydrogels, vesicular particles, droplets, as well as solid surfaces. Acting as robust microreactors/microcompartments/minimal cells, the new platforms can be tuned to perform various tasks in a parallel and integrated manner encompassing gene expression, protein synthesis, purification, detection, and finally enabling cell-cell signaling to bring a collective cell behavior, such as directing differentiation process, characteristics of higher order entities, and beyond. In this review, we issue an update on recent cell-free protein synthesis (CFPS) formats. Furthermore, the latest advances and applications of CFPS for synthetic biology and biotechnology are highlighted. In the end, contemporary challenges and future opportunities of CFPS systems are discussed.


Asunto(s)
Sistema Libre de Células , Técnicas Analíticas Microfluídicas , Biología Sintética , Animales , Células Artificiales , Biotecnología , Vesículas Citoplasmáticas , Humanos , Ratones
12.
Pharmacol Res ; 155: 104716, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32084560

RESUMEN

TNF-related apoptosis-inducing ligand (TRAIL) selectively induces the apoptosis pathway in tumor cells leading to tumor cell death. Because TRAIL induction can kill tumor cells, cancer researchers have developed many agents to target TRAIL and some of these agents have entered clinical trials in oncology. Unfortunately, these trials have failed for many reasons, including drug resistance, off-target toxicities, short half-life, and specifically in gene therapy due to the limited uptake of TRAIL genes by cancer cells. To address these drawbacks, translational researchers have utilized drug delivery platforms. Although, these platforms can improve TRAIL-based therapies, they are unable to sufficiently translate the full potential of TRAIL-targeting to clinically viable products. Herein, we first summarize the complex biology of TRAIL signaling, including TRAILs cross-talk with other signaling pathways and immune cells. Next, we focus on known resistant mechanisms to TRAIL-based therapies. Then, we discuss how nano-formulation has the potential to enhance the therapeutic efficacy of TRAIL protein. Finally, we specify strategies with the potential to overcome the challenges that cannot be addressed via nanotechnology alone, including the alternative methods of TRAIL-expressing circulating cells, tumor-targeting bacteria, viruses, and exosomes.


Asunto(s)
Neoplasias/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Animales , Humanos , Terapia Molecular Dirigida , Nanomedicina , Neoplasias/tratamiento farmacológico , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF , Proteínas Recombinantes/metabolismo , Transducción de Señal
13.
J Cell Physiol ; 234(1): 259-273, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-30144312

RESUMEN

Natural killer (NK) cells are key players of the innate immune system. NK cells provide protection against infectious pathogens and malignancies in cell. This characteristic may be attributable to their intrinsic diverse potentialities and also their cooperation with adaptive immune lymphocytes, known as B and T cells. The growth, recurrence, and metastasis of cancer cells, and the failure of cytoreductive therapies against cancer cells are due to the small population of intratumor stem-like cells, called cancer stem cells (CSCs). Furthermore, NK cells can efficiently eradicate heterogeneous tumor cells after a long-term treatment. Therefore, NK cell-based therapy is a promising strategy to target and break CSC-associated resistance to anticancer drugs treatment. In this review, we have presented an overview of the emerging knowledge of the characteristics, diversities, and mechanism-driven immune surveillance of human NK cells and advances in NK cell-based immunotherapies. Finally, we will discuss how these cells can be applied to introduce the next generation of vaccine- and immune-based approaches to prevent drug resistance.


Asunto(s)
Inmunoterapia , Células Asesinas Naturales/trasplante , Neoplasias/terapia , Células Madre Neoplásicas/patología , Humanos , Neoplasias/patología , Linfocitos T/inmunología
15.
Biochim Biophys Acta Gen Subj ; 1868(9): 130662, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38901497

RESUMEN

Despite advances in cancer therapies, glioblastoma (GBM) remains the most resistant and recurrent tumor in the central nervous system. GBM tumor microenvironment (TME) is a highly dynamic landscape consistent with alteration in tumor infiltration cells, playing a critical role in tumor progression and invasion. In addition, glioma stem cells (GSCs) with self-renewal capability promote tumor recurrence and induce therapy resistance, which all have complicated eradication of GBM with existing therapies. Oncolytic virotherapy is a promising field of therapy that can kill tumor cells in a targeted manner. Manipulated oncolytic viruses (OVs) improve cancer immunotherapy by directly lysis tumor cells, infiltrating antitumor cells, inducing immunogenic cell death, and sensitizing immune-resistant TME to an immune-responsive hot state. Importantly, OVs can target stemness-driven GBM progression. In this review, we will discuss how OVs as a therapeutic option target GBM, especially the GSC subpopulation, and induce immunogenicity to remodel the TME, which subsequently enhances immunotherapies' efficiency.

16.
Cells ; 13(2)2024 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-38275825

RESUMEN

Unlike MCF-7 cells, MDA-MB-231 cells are unresponsive to hormone therapy and often show resistance to chemotherapy and radiotherapy. Here, the antiproliferative effect of biocompatible montmorillonite (Mt) nanosheets on MDA-MB-231 and MCF-7 human breast cancer cells was evaluated by MTT assay, flow cytometry, and qRT-PCR. The results showed that the Mt IC50 for MDA-MB-231 and MCF-7 cells in a fetal bovine serum (FBS)-free medium was ~50 and ~200 µg/mL, and in 10% FBS medium ~400 and ~2000 µg/mL, respectively. Mt caused apoptosis in both cells by regulating related genes including Cas-3, P53, and P62 in MDA-MB-231 cells and Bcl-2, Cas-8, Cas-9, P53, and P62 in MCF-7 cells. Also, Mt arrested MCF-7 cells in the G0/G1 phase by altering Cyclin-D1 and P21 expression, and caused sub-G1 arrest and necrosis in both cells, possibly through damaging the mitochondria. However, fewer gene expression changes and more sub-G1 arrest and necrosis were observed in MDA-MB-231 cells, confirming the higher vulnerability of MDA-MB-231 cells to Mt. Furthermore, MDA-MB-231 cells appeared to be much more vulnerable to Mt compared to other cell types, including normal lung fibroblast (MRC-5), colon cancer (HT-29), and liver cancer (HepG2) cells. The higher vulnerability of MDA-MB-231 cells to Mt was inferred to be due to their higher proliferation rate. Notably, Mt cytotoxicity was highly dependent on both the Mt concentration and serum level, which favors Mt for the local treatment of MDA-MB-231 cells. Based on these results, Mt can be considered as an antiproliferative nanoagent against MDA-MB-231 cells and may be useful in the development of local nanoparticle-based therapies.


Asunto(s)
Bentonita , Neoplasias de la Mama , Humanos , Femenino , Células MCF-7 , Bentonita/farmacología , Bentonita/metabolismo , Proliferación Celular , Proteína p53 Supresora de Tumor/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Necrosis
17.
Med Oncol ; 40(6): 156, 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37093287

RESUMEN

Reprogrammed metabolism and active stemness contribute to cancer stem cells' (CSCs) survival and tumorigenesis. LXR signaling regulates the metabolism of different cancers. A selective LXR inhibitor, SR9243 (SR), can target and eradicate non-CSC tumor cells. CD133 is a stem marker in solid tumors-associated CSCs within the active lipogenesis, and anti-CD133 mAb targeting liposomal drug delivery systems expected to increase drug internalization and improve the therapeutic efficacy of poor-in water solubility drugs, e, g., SR. In this study, anti-CD133 mAbs-targeted Immunoliposomes (ILipo) were developed for specific delivery of SR into MACS-enriched CD133 + CSCs and induce their functional effects. Results have shown that ILipo having an average size of 64.79 nm can encapsulate SR in maximum proportion, and cell association studies have shown cationic ILipo and targeting CD133 provide the CSCs binding. Also, FCM analysis of RhoB has demonstrated that the ILipo uptake was higher in CD133 + CSCs than in the non-targeted liposomes. ILipo-SR was significantly more toxic in CD133 + CSCs compared to the free SR and non-targeted ones. More efficient than Lipo-SR, ILipo-SR improved the reduction of clonogenicity, stemness, and lipogenesis in CD133 + CSCs in vitro, boosted ROS generation, and induced apoptosis. Our study revealed the dual targeting of CD133 and LXR appears to be a promising strategy for targeting CD133 + CSCs-presenting dynamic metabolism and self-renewal potentials.


Asunto(s)
Neoplasias Colorrectales , Liposomas , Humanos , Línea Celular Tumoral , Metabolismo de los Lípidos , Células Madre Neoplásicas/patología , Neoplasias Colorrectales/patología , Antígeno AC133/metabolismo
18.
Stem Cell Res Ther ; 14(1): 194, 2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37542279

RESUMEN

Many problems related to disorders and defects of bone tissue caused by aging, diseases, and injuries have been solved by the multidisciplinary research field of regenerative medicine and tissue engineering. Numerous sciences, especially nanotechnology, along with tissue engineering, have greatly contributed to the repair and regeneration of tissues. Various studies have shown that the presence of magnetic nanoparticles (MNPs) in the structure of composite scaffolds increases their healing effect on bone defects. In addition, the induction of osteogenic differentiation of mesenchymal stem cells (MSCs) in the presence of these nanoparticles has been investigated and confirmed by various studies. Therefore, in the present article, the types of MNPs, their special properties, and their application in the healing of damaged bone tissue have been reviewed. Also, the molecular effects of MNPs on cell behavior, especially in osteogenesis, have been discussed. Finally, the present article includes the potential applications of MNP-containing nanocomposite scaffolds in bone lesions and injuries. In summary, this review article highlights nanocomposite scaffolds containing MNPs as a solution for treating bone defects in tissue engineering and regenerative medicine.


Asunto(s)
Nanopartículas de Magnetita , Nanocompuestos , Osteogénesis , Andamios del Tejido/química , Nanopartículas de Magnetita/uso terapéutico , Nanopartículas de Magnetita/química , Huesos , Ingeniería de Tejidos , Diferenciación Celular , Nanocompuestos/química , Regeneración Ósea
19.
Cancer Lett ; 554: 216007, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36396102

RESUMEN

Intra-tumoral immune cells promote the stemness of cancer stem cells (CSCs) in the tumor microenvironment (TME). CSCs promote tumor progression, relapse, and resistance to immunotherapy. Cancer stemness induces the expression of neoantigens and neo-properties in CSCs, creating an opportunity for targeted immunotherapies. Isolation of stem-like T cells or retaining stemness in T clonotypes strategies produces exhaustion-resistance T cells with superior re-expansion capacity and long-lasting responses after adoptive cell therapies. Stem cells-derived NK cells may be the next generation of NK cell products for immunotherapy. Here, we have reviewed mechanisms by which stemness factors modulated the immunoediting of the TME and summarized the potentials of CSCs in the development of immunotherapy regimens, including CAR-T cells, CAR-NK cells, cancer vaccines, and monoclonal antibodies. We have discussed the natural or genetically engineered stem-like T cells and stem cell-derived NK cells with increased cytotoxicity to tumor cells. Finally, we have provided a perspective on approaches that may improve the therapeutic efficacy of these novel adoptive cell-based products in targeting immunosuppressive TME.


Asunto(s)
Neoplasias , Humanos , Neoplasias/patología , Inmunoterapia , Células Asesinas Naturales , Linfocitos T/patología , Inmunoterapia Adoptiva , Microambiente Tumoral
20.
Front Immunol ; 14: 1226360, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37727791

RESUMEN

Angiogenesis is a hallmark of cancer biology, and neoadjuvant therapies targeting either tumor vasculature or VEGF signaling have been developed to treat solid malignant tumors. However, these therapies induce complete vascular depletion leading to hypoxic niche, drug resistance, and tumor recurrence rate or leading to impaired delivery of chemo drugs and immune cell infiltration at the tumor site. Achieving a balance between oxygenation and tumor growth inhibition requires determining vascular normalization after treatment with a low dose of antiangiogenic agents. However, monotherapy within the approved antiangiogenic agents' benefits only some tumors and their efficacy improvement could be achieved using immunotherapy and emerging nanocarriers as a clinical tool to optimize subsequent therapeutic regimens and reduce the need for a high dosage of chemo agents. More importantly, combined immunotherapies and nano-based delivery systems can prolong the normalization window while providing the advantages to address the current treatment challenges within antiangiogenic agents. This review summarizes the approved therapies targeting tumor angiogenesis, highlights the challenges and limitations of current therapies, and discusses how vascular normalization, immunotherapies, and nanomedicine could introduce the theranostic potentials to improve tumor management in future clinical settings.


Asunto(s)
Inhibidores de la Angiogénesis , Inmunoterapia , Humanos , Inhibidores de la Angiogénesis/uso terapéutico , Hipoxia , Nanomedicina , Sistema de Administración de Fármacos con Nanopartículas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA