RESUMEN
The ventromedial nucleus of the hypothalamus (VMH) plays a critical role in regulating systemic glucose homeostasis. How neurons in this brain area adapt to the changing metabolic environment to regulate circulating glucose levels is ill defined. Here, we show that glucose load results in mitochondrial fission and reduced reactive oxygen species in VMH neurons mediated by dynamin-related peptide 1 (DRP1) under the control of uncoupling protein 2 (UCP2). Probed by genetic manipulations and chemical-genetic control of VMH neuronal circuitry, we unmasked that this mitochondrial adaptation determines the size of the pool of glucose-excited neurons in the VMH and that this process regulates systemic glucose homeostasis. Thus, our data unmasked a critical cellular biological process controlled by mitochondrial dynamics in VMH regulation of systemic glucose homeostasis.
Asunto(s)
Núcleo Celular/metabolismo , Glucosa/metabolismo , Canales Iónicos/metabolismo , Dinámicas Mitocondriales , Proteínas Mitocondriales/metabolismo , Núcleo Hipotalámico Ventromedial/metabolismo , Animales , Dinaminas/metabolismo , Técnicas de Sustitución del Gen , Homeostasis , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/metabolismo , Especies Reactivas de Oxígeno , Proteína Desacopladora 2RESUMEN
Beyond their role as brain immune cells, microglia act as metabolic sensors in response to changes in nutrient availability, thus playing a role in energy homeostasis. This review highlights the evidence and challenges of studying the role of microglia in metabolism regulation.
Asunto(s)
Microglía , Obesidad , Humanos , Microglía/metabolismo , Hipotálamo/metabolismo , Metabolismo Energético/fisiología , Homeostasis/fisiologíaRESUMEN
AIM/HYPOTHESIS: The peroxisome proliferator-activated receptor-γ coactivator α (PGC-1α) plays a critical role in the maintenance of glucose, lipid and energy homeostasis by orchestrating metabolic programs in multiple tissues in response to environmental cues. In skeletal muscles, PGC-1α dysregulation has been associated with insulin resistance and type 2 diabetes but the underlying mechanisms have remained elusive. This research aims to understand the role of TET3, a member of the ten-eleven translocation (TET) family dioxygenases, in PGC-1α dysregulation in skeletal muscles in obesity and diabetes. METHODS: TET expression levels in skeletal muscles were analysed in humans with or without type 2 diabetes, as well as in mouse models of high-fat diet (HFD)-induced or genetically induced (ob/ob) obesity/diabetes. Muscle-specific Tet3 knockout (mKD) mice were generated to study TET3's role in muscle insulin sensitivity. Genome-wide expression profiling (RNA-seq) of muscle tissues from wild-type (WT) and mKD mice was performed to mine deeper insights into TET3-mediated regulation of muscle insulin sensitivity. The correlation between PGC-1α and TET3 expression levels was investigated using muscle tissues and in vitro-derived myotubes. PGC-1α phosphorylation and degradation were analysed using in vitro assays. RESULTS: TET3 expression was elevated in skeletal muscles of humans with type 2 diabetes and in HFD-fed and ob/ob mice compared with healthy controls. mKD mice exhibited enhanced glucose tolerance, insulin sensitivity and resilience to HFD-induced insulin resistance. Pathway analysis of RNA-seq identified 'Mitochondrial Function' and 'PPARα Pathway' to be among the top biological processes regulated by TET3. We observed higher PGC-1α levels (~25%) in muscles of mKD mice vs WT mice, and lower PGC-1α protein levels (~25-60%) in HFD-fed or ob/ob mice compared with their control counterparts. In human and murine myotubes, increased PGC-1α levels following TET3 knockdown contributed to improved mitochondrial respiration and insulin sensitivity. TET3 formed a complex with PGC-1α and interfered with its phosphorylation, leading to its destabilisation. CONCLUSIONS/INTERPRETATION: Our results demonstrate an essential role for TET3 in the regulation of skeletal muscle insulin sensitivity and suggest that TET3 may be used as a potential therapeutic target for the metabolic syndrome. DATA AVAILABILITY: Sequences are available from the Gene Expression Omnibus ( https://www.ncbi.nlm.nih.gov/geo/ ) with accession number of GSE224042.
Asunto(s)
Diabetes Mellitus Tipo 2 , Dioxigenasas , Resistencia a la Insulina , Animales , Humanos , Ratones , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Dioxigenasas/metabolismo , Glucosa/metabolismo , Resistencia a la Insulina/genética , Músculo Esquelético/metabolismo , Obesidad/genética , Obesidad/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
High-fat diet (HFD) consumption leads to obesity and a chronic state of low-grade inflammation, named metainflammation. Notably, metainflammation contributes to neuroinflammation due to the increased levels of circulating free fatty acids and cytokines. It indicates a strict interplay between peripheral and central counterparts in the pathogenic mechanisms of obesity-related mood disorders. In this context, the impairment of internal hypothalamic circuitry runs in tandem with the alteration of other brain areas associated with emotional processing (i.e., hippocampus and amygdala). Palmitoylethanolamide (PEA), an endogenous lipid mediator belonging to the N-acylethanolamines family, has been extensively studied for its pleiotropic effects both at central and peripheral level. Our study aimed to elucidate PEA capability in limiting obesity-induced anxiety-like behavior and neuroinflammation-related features in an experimental model of HFD-fed obese mice. PEA treatment promoted an improvement in anxiety-like behavior of obese mice and the systemic inflammation, reducing serum pro-inflammatory mediators (i.e., TNF-α, IL-1ß, MCP-1, LPS). In the amygdala, PEA increased dopamine turnover, as well as GABA levels. PEA also counteracted the overactivation of HPA axis, reducing the expression of hypothalamic corticotropin-releasing hormone and its type 1 receptor. Moreover, PEA attenuated the immunoreactivity of Iba-1 and GFAP and reduced pro-inflammatory pathways and cytokine production in both the hypothalamus and hippocampus. This finding, together with the reduced transcription of mast cell markers (chymase 1 and tryptase ß2) in the hippocampus, indicated the weakening of immune cell activation underlying the neuroprotective effect of PEA. Obesity-driven neuroinflammation was also associated with the disruption of blood-brain barrier (BBB) in the hippocampus. PEA limited the albumin extravasation and restored tight junction transcription modified by HFD. To gain mechanistic insight, we designed an in vitro model of metabolic injury using human neuroblastoma SH-SY5Y cells insulted by a mix of glucosamine and glucose. Here, PEA directly counteracted inflammation and mitochondrial dysfunction in a PPAR-α-dependent manner since the pharmacological blockade of the receptor reverted its effects. Our results strengthen the therapeutic potential of PEA in obesity-related neuropsychiatric comorbidities, controlling neuroinflammation, BBB disruption, and neurotransmitter imbalance involved in behavioral dysfunctions.
Asunto(s)
Sistema Hipotálamo-Hipofisario , Enfermedades Neuroinflamatorias , Amidas , Animales , Ansiedad/tratamiento farmacológico , Dieta Alta en Grasa , Etanolaminas , Sistema Hipotálamo-Hipofisario/metabolismo , Inflamación , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/complicaciones , Obesidad/metabolismo , Ácidos Palmíticos , Sistema Hipófiso-Suprarrenal/metabolismoRESUMEN
Microglia have been implicated in synapse remodeling by phagocytosis of synaptic elements in the adult brain, but the mechanisms involved in the regulation of this process are ill-defined. By examining microglia-neuronal interaction in the ventral hippocampus, we found a significant reduction in spine synapse number during the light phase of the light/dark cycle accompanied by increased microglia-synapse contacts and an elevated amount of microglial phagocytic inclusions. This was followed by a transient rise in microglial production of reactive oxygen species (ROS) and a concurrent increase in expression of uncoupling protein 2 (Ucp2), a regulator of mitochondrial ROS generation. Conditional ablation of Ucp2 from microglia hindered phasic elimination of spine synapses with consequent accumulations of ROS and lysosome-lipid droplet complexes, which resulted in hippocampal neuronal circuit dysfunctions assessed by electrophysiology, and altered anxiety-like behavior. These observations unmasked a novel and chronotypical interaction between microglia and neurons involved in the control of brain functions.
Asunto(s)
Ansiedad , Hipocampo , Microglía , Neuronas , Proteína Desacopladora 2/genética , Animales , Femenino , Masculino , Ratones , Ratones Noqueados , Vías Nerviosas , SinapsisRESUMEN
Chronic metabolic diseases, including diabetes and obesity, have become a major global health threat of the twenty-first century. Maintaining glucose homeostasis is essential for survival in mammals. Complex and highly coordinated interactions between glucose-sensing mechanisms and multiple effector systems are essential for controlling glucose levels in the blood. The central nervous system (CNS) plays a crucial role in regulating glucose homeostasis. Growing evidence indicates that disruption of glucose sensing in selective CNS areas, such as the hypothalamus, is closely interlinked with the pathogenesis of obesity and type 2 diabetes mellitus. However, the underlying intracellular mechanisms of glucose sensing in the hypothalamus remain elusive. Here, we review the current literature on hypothalamic glucose-sensing mechanisms and discuss the impact of alterations of these mechanisms on the pathogenesis of diabetes.
Asunto(s)
Glucosa/metabolismo , Homeostasis/fisiología , Hipotálamo/fisiología , Animales , Diabetes Mellitus Tipo 2/etiología , Diabetes Mellitus Tipo 2/metabolismo , Metabolismo Energético/fisiología , Humanos , Obesidad/etiología , Obesidad/metabolismo , Factores de RiesgoRESUMEN
Hypothalamic pro-opiomelanocortin (POMC) neurons promote satiety. Cannabinoid receptor 1 (CB1R) is critical for the central regulation of food intake. Here we test whether CB1R-controlled feeding in sated mice is paralleled by decreased activity of POMC neurons. We show that chemical promotion of CB1R activity increases feeding, and notably, CB1R activation also promotes neuronal activity of POMC cells. This paradoxical increase in POMC activity was crucial for CB1R-induced feeding, because designer-receptors-exclusively-activated-by-designer-drugs (DREADD)-mediated inhibition of POMC neurons diminishes, whereas DREADD-mediated activation of POMC neurons enhances CB1R-driven feeding. The Pomc gene encodes both the anorexigenic peptide α-melanocyte-stimulating hormone, and the opioid peptide ß-endorphin. CB1R activation selectively increases ß-endorphin but not α-melanocyte-stimulating hormone release in the hypothalamus, and systemic or hypothalamic administration of the opioid receptor antagonist naloxone blocks acute CB1R-induced feeding. These processes involve mitochondrial adaptations that, when blocked, abolish CB1R-induced cellular responses and feeding. Together, these results uncover a previously unsuspected role of POMC neurons in the promotion of feeding by cannabinoids.
Asunto(s)
Cannabinoides/farmacología , Ingestión de Alimentos/efectos de los fármacos , Ingestión de Alimentos/fisiología , Hipotálamo/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Proopiomelanocortina/metabolismo , Animales , Metabolismo Energético/efectos de los fármacos , Hipotálamo/efectos de los fármacos , Hipotálamo/fisiología , Canales Iónicos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Naloxona/farmacología , Receptor Cannabinoide CB1/agonistas , Receptor Cannabinoide CB1/metabolismo , Respuesta de Saciedad/efectos de los fármacos , Respuesta de Saciedad/fisiología , Proteína Desacopladora 2 , alfa-MSH/metabolismo , betaendorfina/metabolismoRESUMEN
The hypothalamus is an evolutionarily conserved brain structure that regulates an organism's basic functions, such as homeostasis and reproduction. Several hypothalamic nuclei and neuronal circuits have been the focus of many studies seeking to understand their role in regulating these basic functions. Within the hypothalamic neuronal populations, the arcuate melanocortin system plays a major role in controlling homeostatic functions. The arcuate pro-opiomelanocortin (POMC) neurons in particular have been shown to be critical regulators of metabolism and reproduction because of their projections to several brain areas both in and outside of the hypothalamus, such as autonomic regions of the brain stem and spinal cord. Here, we review and discuss the current understanding of POMC neurons from their development and intracellular regulators to their physiological functions and pathological dysregulation.
Asunto(s)
Hipotálamo/metabolismo , Hipotálamo/fisiología , Neuronas/metabolismo , Neuronas/fisiología , Proopiomelanocortina/metabolismo , Animales , Homeostasis/fisiología , HumanosRESUMEN
Prolyl endopeptidase (PREP) has been implicated in neuronal functions. Here we report that hypothalamic PREP is predominantly expressed in the ventromedial nucleus (VMH), where it regulates glucose-induced neuronal activation. PREP knockdown mice (Prep(gt/gt)) exhibited glucose intolerance, decreased fasting insulin, increased fasting glucagon levels, and reduced glucose-induced insulin secretion compared with wild-type controls. Consistent with this, central infusion of a specific PREP inhibitor, S17092, impaired glucose tolerance and decreased insulin levels in wild-type mice. Arguing further for a central mode of action of PREP, isolated pancreatic islets showed no difference in glucose-induced insulin release between Prep(gt/gt) and wild-type mice. Furthermore, hyperinsulinemic euglycemic clamp studies showed no difference between Prep(gt/gt) and wild-type control mice. Central PREP regulation of insulin and glucagon secretion appears to be mediated by the autonomic nervous system because Prep(gt/gt) mice have elevated sympathetic outflow and norepinephrine levels in the pancreas, and propranolol treatment reversed glucose intolerance in these mice. Finally, re-expression of PREP by bilateral VMH injection of adeno-associated virus-PREP reversed the glucose-intolerant phenotype of the Prep(gt/gt) mice. Taken together, our results unmask a previously unknown player in central regulation of glucose metabolism and pancreatic function.
Asunto(s)
Glucagón/metabolismo , Hipotálamo/enzimología , Insulina/metabolismo , Serina Endopeptidasas/metabolismo , Animales , Glucemia/metabolismo , Expresión Génica , Técnicas de Silenciamiento del Gen , Técnica de Clampeo de la Glucosa , Intolerancia a la Glucosa/enzimología , Intolerancia a la Glucosa/etiología , Hipotálamo/fisiología , Indoles/farmacología , Secreción de Insulina , Canales Iónicos/genética , Masculino , Ratones , Ratones Transgénicos , Proteínas Mitocondriales/genética , Páncreas/metabolismo , Fosforilación , Prolil Oligopeptidasas , Receptor de Insulina/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serina Endopeptidasas/deficiencia , Serina Endopeptidasas/genética , Inhibidores de Serina Proteinasa/farmacología , Tiazolidinas/farmacología , Proteína Desacopladora 1 , Núcleo Hipotalámico Ventromedial/enzimología , Núcleo Hipotalámico Ventromedial/fisiologíaRESUMEN
Prolyl endopeptidase (PREP) is a serine protease which has been implicated in many biological processes, such as the maturation and degradation of peptide hormones and neuropeptides, learning and memory, cell proliferation and differentiation, and glucose metabolism. A small number of reports have also suggested PREP participation in both male and female reproduction-associated processes. In the present work, we examined PREP distribution in male germ cells and studied the effects of its knockdown (Prep(gt/gt)) on testis and sperm in adult mice. The protein is expressed and localized in elongating spermatids and luminal spermatozoa of wild type (wt) mice, as well as Sertoli, Leydig, and peritubular cells. PREP is also expressed in the head and midpiece of epididymal spermatozoa, whereas the remaining tail region shows a weaker signal. Furthermore, testis weight, histology of seminiferous tubules, and epididymal sperm parameters were assessed in wt and Prep(gt/gt) mice: wild type testes have larger average tubule and lumen diameter; in addition, lumenal composition of seminiferous tubules is dissimilar between wt and Prep(gt/gt), as the percentage of spermiated tubules is much higher in wt. Finally, total sperm count, sperm motility, and normal morphology are also higher in wt than in Prep(gt/gt). These results show for the first time that the expression of PREP could be necessary for a correct reproductive function, and suggest that the enzyme may play a role in mouse spermatogenesis and sperm physiology.
Asunto(s)
Epidídimo/metabolismo , Serina Endopeptidasas/metabolismo , Motilidad Espermática/fisiología , Espermatogénesis/fisiología , Espermatozoides/enzimología , Testículo/citología , Testículo/enzimología , Animales , Masculino , Ratones Endogámicos C57BL , Prolil Oligopeptidasas , Reproducción , Recuento de Espermatozoides/métodos , Espermatozoides/citologíaRESUMEN
Whole-body energy metabolism is regulated by the hypothalamus and has an impact on diverse tissue functions. Here we show that selective knockdown of Sirtuin 1 Sirt1 in hypothalamic Agouti-related peptide-expressing neurons, which renders these cells less responsive to cues of low energy availability, significantly promotes CD4(+) T-cell activation by increasing production of T helper 1 and 17 proinflammatory cytokines via mediation of the sympathetic nervous system. These phenomena were associated with an impaired thymic generation of forkhead box P3 (FoxP3(+)) naturally occurring regulatory T cells and their reduced suppressive capacity in the periphery, which resulted in increased delayed-type hypersensitivity responses and autoimmune disease susceptibility in mice. These observations unmask a previously unsuspected role of hypothalamic feeding circuits in the regulation of adaptive immune response.
Asunto(s)
Hambre , Hipotálamo/patología , Neuronas/patología , Linfocitos T Reguladores/citología , Inmunidad Adaptativa , Alelos , Animales , Antígenos/metabolismo , Autoinmunidad , Dominio Catalítico , Encefalomielitis Autoinmune Experimental/metabolismo , Citometría de Flujo , Privación de Alimentos , Factores de Transcripción Forkhead/metabolismo , Predisposición Genética a la Enfermedad , Humanos , Hipotálamo/metabolismo , Inflamación , Ratones , Ratones Noqueados , Ratones Transgénicos , Vaina de Mielina/metabolismo , Sirtuina 1/metabolismo , Timo/metabolismoRESUMEN
Fatty acid amide hydrolase (FAAH) knockout mice are prone to excess energy storage and adiposity, whereas mutations in FAAH are associated with obesity in humans. However, the molecular mechanism by which FAAH affects energy expenditure (EE) remains unknown. Here we show that reduced energy expenditure in FAAH(-/-) mice could be attributed to decreased circulating triiodothyronine and thyroxine concentrations secondary to reduced mRNA expression of both pituitary thyroid-stimulating hormone and hypothalamic thyrotropin-releasing hormone. These reductions in the hypothalamic-pituitary-thyroid axis were associated with activation of hypothalamic peroxisome proliferating-activated receptor γ (PPARγ), and increased hypothalamic deiodinase 2 expression. Infusion of NAEs (anandamide and palmitoylethanolamide) recapitulated increases in PPARγ-mediated decreases in EE. FAAH(-/-) mice were also prone to diet-induced hepatic insulin resistance, which could be attributed to increased hepatic diacylglycerol content and protein kinase Cε activation. Our data indicate that FAAH deletion, and the resulting increases in NAEs, predispose mice to ectopic lipid storage and hepatic insulin resistance by promoting centrally mediated hypothyroidism.
Asunto(s)
Amidohidrolasas/genética , Metabolismo Energético/fisiología , Hipotiroidismo/complicaciones , Hipotiroidismo/genética , Resistencia a la Insulina/fisiología , Amidas , Amidohidrolasas/deficiencia , Análisis de Varianza , Animales , Ácidos Araquidónicos/administración & dosificación , Cromatografía Liquida , Endocannabinoides/administración & dosificación , Metabolismo Energético/genética , Etanolaminas/administración & dosificación , Hipotiroidismo/enzimología , Immunoblotting , Ratones , Ratones Noqueados , PPAR gamma , Ácidos Palmíticos/administración & dosificación , Reacción en Cadena de la Polimerasa , Alcamidas Poliinsaturadas/administración & dosificación , Espectrometría de Masas en Tándem , Tirotropina/metabolismo , Hormona Liberadora de Tirotropina/metabolismo , Tiroxina/sangre , Triyodotironina/sangreRESUMEN
BACKGROUND: Cognitive deficits are a core symptom of schizophrenia, yet they remain particularly resistant to treatment. The model provided by repeatedly exposing adult nonhuman primates to phencyclidine has generated important insights into the neurobiology of these deficits, but it remains possible that administration of this psychotomimetic agent during the pre-adult period, when the dorsolateral prefrontal cortex in human and nonhuman primates is still undergoing significant maturation, may provide a greater understanding of schizophrenia-related cognitive deficits. METHODS: The effects of repeated phencyclidine treatment on spine synapse number, dopamine turnover and BDNF expression in dorsolateral prefrontal cortex, and working memory accuracy were examined in pre-adult monkeys. RESULTS: One week following phencyclidine treatment, juvenile and adolescent male monkeys demonstrated a greater loss of spine synapses in dorsolateral prefrontal cortex than adult male monkeys. Further studies indicated that in juvenile males, a cognitive deficit existed at 4 weeks following phencyclidine treatment, and this impairment was associated with decreased dopamine turnover, decreased brain derived neurotrophic factor messenger RNA, and a loss of dendritic spine synapses in dorsolateral prefrontal cortex. In contrast, female juvenile monkeys displayed no cognitive deficit at 4 weeks after phencyclidine treatment and no alteration in dopamine turnover or brain derived neurotrophic factor messenger RNA or spine synapse number in dorsolateral prefrontal cortex. In the combined group of male and female juvenile monkeys, significant linear correlations were detected between dopamine turnover, spine synapse number, and cognitive performance. CONCLUSIONS: As the incidence of schizophrenia is greater in males than females, these findings support the validity of the juvenile primate phencyclidine model and highlight its potential usefulness in understanding the deficits in dorsolateral prefrontal cortex in schizophrenia and developing novel treatments for the cognitive deficits associated with schizophrenia.
Asunto(s)
Conducta Animal , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Cognición , Dopamina/metabolismo , Fenciclidina , Corteza Prefrontal/metabolismo , Esquizofrenia/metabolismo , Psicología del Esquizofrénico , Médula Espinal/metabolismo , Sinapsis/metabolismo , Factores de Edad , Animales , Chlorocebus aethiops , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Femenino , Masculino , Memoria a Corto Plazo , Corteza Prefrontal/fisiopatología , Esquizofrenia/inducido químicamente , Esquizofrenia/patología , Esquizofrenia/fisiopatología , Factores Sexuales , Médula Espinal/fisiopatología , Médula Espinal/ultraestructura , Sinapsis/ultraestructura , Factores de TiempoRESUMEN
Metabolic hormones, such as leptin, alter the input organization of hypothalamic circuits, resulting in increased pro-opiomelanocortin (POMC) tone, followed by decreased food intake and adiposity. The gonadal steroid estradiol can also reduce appetite and adiposity, and it influences synaptic plasticity. Here we report that estradiol (E2) triggers a robust increase in the number of excitatory inputs to POMC neurons in the arcuate nucleus of wild-type rats and mice. This rearrangement of synapses in the arcuate nucleus is leptin independent because it also occurred in leptin-deficient (ob/ob) and leptin receptor-deficient (db/db) mice, and was paralleled by decreased food intake and body weight gain as well as increased energy expenditure. However, estrogen-induced decrease in body weight was dependent on Stat3 activation in the brain. These observations support the notion that synaptic plasticity of arcuate nucleus feeding circuits is an inherent element in body weight regulation and offer alternative approaches to reducing adiposity under conditions of failed leptin receptor signaling.
Asunto(s)
Estradiol/farmacología , Melanocortinas/metabolismo , Neuronas/efectos de los fármacos , Obesidad/fisiopatología , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Anorexia/inducido químicamente , Anorexia/fisiopatología , Núcleo Arqueado del Hipotálamo/citología , Núcleo Arqueado del Hipotálamo/fisiología , Núcleo Arqueado del Hipotálamo/ultraestructura , Peso Corporal/efectos de los fármacos , Estradiol/administración & dosificación , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/fisiología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Femenino , Inyecciones Intraventriculares , Leptina/genética , Leptina/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Obesos , Microscopía Electrónica , Neuronas/citología , Neuronas/metabolismo , Obesidad/genética , Ovariectomía , Proopiomelanocortina/metabolismo , Ratas , Ratas Sprague-DawleyRESUMEN
The gut-derived hormone ghrelin exerts its effect on the brain by regulating neuronal activity. Ghrelin-induced feeding behaviour is controlled by arcuate nucleus neurons that co-express neuropeptide Y and agouti-related protein (NPY/AgRP neurons). However, the intracellular mechanisms triggered by ghrelin to alter NPY/AgRP neuronal activity are poorly understood. Here we show that ghrelin initiates robust changes in hypothalamic mitochondrial respiration in mice that are dependent on uncoupling protein 2 (UCP2). Activation of this mitochondrial mechanism is critical for ghrelin-induced mitochondrial proliferation and electric activation of NPY/AgRP neurons, for ghrelin-triggered synaptic plasticity of pro-opiomelanocortin-expressing neurons, and for ghrelin-induced food intake. The UCP2-dependent action of ghrelin on NPY/AgRP neurons is driven by a hypothalamic fatty acid oxidation pathway involving AMPK, CPT1 and free radicals that are scavenged by UCP2. These results reveal a signalling modality connecting mitochondria-mediated effects of G-protein-coupled receptors on neuronal function and associated behaviour.
Asunto(s)
Proteína Relacionada con Agouti/metabolismo , Ghrelina/metabolismo , Canales Iónicos/metabolismo , Proteínas Mitocondriales/metabolismo , Neuronas/metabolismo , Neuropéptido Y/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteína Relacionada con Agouti/genética , Animales , Carnitina O-Palmitoiltransferasa/metabolismo , Ácidos Grasos/metabolismo , Conducta Alimentaria/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Ghrelina/farmacología , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Canales Iónicos/genética , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Potencial de la Membrana Mitocondrial/fisiología , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/fisiología , Proteínas Mitocondriales/genética , Neuronas/efectos de los fármacos , Neuropéptido Y/genética , Fosforilación/efectos de los fármacos , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Proteína Desacopladora 2RESUMEN
Prolyl endopeptidase (PREP) is a phylogenetically conserved serine protease and, in humans and rodents, is highly expressed in the brain. Several neuropeptides associated with learning and memory and neurodegenerative disorders have been proposed to be the substrates for PREP, suggesting a possible role for PREP in these processes. However, its physiological function remains elusive. Combining genetic, anatomical, electrophysiological, and behavioral approaches, we show that PREP genetrap mice have decreased synaptic spine density in the CA1 region of the hippocampus, reduced hippocampal long-term potentiation, impaired hippocampal-mediated learning and memory, and reduced growth-associated protein-43 levels when compared with wild-type controls. These observations reveal a role for PREP in mediating hippocampal plasticity and spatial memory formation, with implications for its pharmacological manipulation in diseases related to cognitive impairment.
Asunto(s)
Región CA1 Hipocampal/ultraestructura , Espinas Dendríticas/ultraestructura , Potenciación a Largo Plazo/fisiología , Aprendizaje por Laberinto/fisiología , Memoria/fisiología , Serina Endopeptidasas/fisiología , Sinapsis/ultraestructura , Animales , Región CA1 Hipocampal/fisiología , Técnicas de Silenciamiento del Gen , Masculino , Ratones , Prolil Oligopeptidasas , Serina Endopeptidasas/genéticaRESUMEN
Obesity is a metabolic state in which excess fat is accumulated in peripheral tissues, including the white adipose tissue, muscle, and liver. Sustained obesity has profound consequences on one's life, which can span from superficial psychological symptoms to serious co-morbidities that may dramatically diminish both the quality and length of life. Obesity and related metabolic disorders account for the largest financial burden on the health care system. Together, these issues make it imperative that obesity be cured or prevented. Despite the increasing wealth of knowledge on the etiology of obesity (see below), there is no successful medical strategy that is available for the vast majority of patients. We suggest that brain temperature control may be a crucial component in obesity development and that shortcutting the brain metabolic centers by hypothalamic temperature alterations in a non-invasive remote manner will provide a revolutionary approach to the treatment of obesity.
Asunto(s)
Temperatura Corporal/fisiología , Hipotálamo/fisiopatología , Modelos Biológicos , Obesidad/fisiopatología , Animales , Conducta Alimentaria , Humanos , Obesidad/terapiaRESUMEN
The neuronal circuits involved in the regulation of feeding behavior and energy expenditure are soft-wired, reflecting the relative activity of the postsynaptic neuronal system, including the anorexigenic proopiomelanocortin (POMC)-expressing cells of the arcuate nucleus. We analyzed the synaptic input organization of the melanocortin system in lean rats that were vulnerable (DIO) or resistant (DR) to diet-induced obesity. We found a distinct difference in the quantitative and qualitative synaptology of POMC cells between DIO and DR animals, with a significantly greater number of inhibitory inputs in the POMC neurons in DIO rats compared with DR rats. When exposed to a high-fat diet (HFD), the POMC cells of DIO animals lost synapses, whereas those of DR rats recruited connections. In both DIO rats and mice, the HFD-triggered loss of synapses on POMC neurons was associated with increased glial ensheathment of the POMC perikarya. The altered synaptic organization of HFD-fed animals promoted increased POMC tone and a decrease in the stimulatory connections onto the neighboring neuropeptide Y (NPY) cells. Exposure to HFD was associated with reactive gliosis, and this affected the structure of the blood-brain barrier such that the POMC and NPY cell bodies and dendrites became less accessible to blood vessels. Taken together, these data suggest that consumption of an HFD has a major impact on the cytoarchitecture of the arcuate nucleus in vulnerable subjects, with changes that might be irreversible due to reactive gliosis.
Asunto(s)
Dieta , Gliosis/metabolismo , Melanocortinas/metabolismo , Obesidad/metabolismo , Sinapsis/metabolismo , Animales , Núcleo Arqueado del Hipotálamo/metabolismo , Núcleo Arqueado del Hipotálamo/patología , Núcleo Arqueado del Hipotálamo/fisiopatología , Grasas de la Dieta/efectos adversos , Femenino , Gliosis/etiología , Hipotálamo/metabolismo , Hipotálamo/patología , Hipotálamo/fisiopatología , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Electrónica , Neuronas/metabolismo , Neuronas/ultraestructura , Neuropéptido Y/metabolismo , Obesidad/etiología , Proopiomelanocortina/metabolismo , Ratas , Ratas Sprague-Dawley , Transmisión Sináptica/fisiologíaRESUMEN
BACKGROUND: The bone synthesizing function of osteoblasts (OBs) is a highly demanding energy process that requires nutrients. However, how nutrient availability affects OBs behavior and bone mineralization remain to be fully understood. METHODS: MC3T3-E1 cell line and primary OBs (OBs) cultures were treated with physiological levels of glucose (G; 5.5 mM) alone or with the addition of palmitic acid (G+PA) at different concentrations. Mitochondria morphology and activity were evaluated by fluorescence microscopy, qPCR, and oxygen consumption rate (OCR) measurement, and OBs function was assessed by mineralization assay. RESULTS: The addition of non-lipotoxic levels of 25 µM PA to G increased mineralization in OBs. G+25 µM PA exposure reduced mitochondria size in OBs, which was associated with increased activation of dynamin-related protein 1, a mitochondrial fission protein, enhanced mitochondria OCR and ATP production, and increased expression of oxidative phosphorylation genes. Treatment with Mdivi-1, a putative inhibitor of mitochondrial fission, reduced osteogenesis and mitochondrial respiration in OBs. CONCLUSIONS: Our results revealed that OBs function was enhanced in the presence of glucose and PA at 25 µM. This was associated with increased OBs mitochondrial respiration and dynamics. These results suggest a role for nutrient availability in bone physiology and pathophysiology.