Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 5356, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36127326

RESUMEN

Macrophages are essential for tissue repair and regeneration. Yet, the molecular programs, as well as the timing of their activation during and after tissue injury are poorly defined. Using a high spatio-temporal resolution single cell analysis of macrophages coupled with live imaging after sensory hair cell death in zebrafish, we find that the same population of macrophages transitions through a sequence of three major anti-inflammatory activation states. Macrophages first show a signature of glucocorticoid activation, then IL-10 signaling and finally the induction of oxidative phosphorylation by IL-4/Polyamine signaling. Importantly, loss-of-function of glucocorticoid and IL-10 signaling shows that each step of the sequence is independently activated. Lastly, we show that IL-10 and IL-4 signaling act synergistically to promote synaptogenesis between hair cells and efferent neurons during regeneration. Our results show that macrophages, in addition to a switch from M1 to M2, sequentially and independently transition though three anti-inflammatory pathways in vivo during tissue injury in a regenerating organ.


Asunto(s)
Interleucina-10 , Pez Cebra , Animales , Antiinflamatorios/metabolismo , Antiinflamatorios/farmacología , Glucocorticoides/metabolismo , Inflamación/genética , Inflamación/metabolismo , Interleucina-10/genética , Interleucina-10/metabolismo , Interleucina-4/genética , Interleucina-4/metabolismo , Macrófagos/metabolismo , Poliaminas/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo
2.
Dev Cell ; 57(6): 799-819.e6, 2022 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-35316618

RESUMEN

Loss of sensory hair cells (HCs) in the mammalian inner ear leads to permanent hearing and vestibular defects, whereas loss of HCs in zebrafish results in their regeneration. We used single-cell RNA sequencing (scRNA-seq) to characterize the transcriptional dynamics of HC regeneration in zebrafish at unprecedented spatiotemporal resolution. We uncovered three sequentially activated modules: first, an injury/inflammatory response and downregulation of progenitor cell maintenance genes within minutes after HC loss; second, the transient activation of regeneration-specific genes; and third, a robust re-activation of developmental gene programs, including HC specification, cell-cycle activation, ribosome biogenesis, and a metabolic switch to oxidative phosphorylation. The results are relevant not only for our understanding of HC regeneration and how we might be able to trigger it in mammals but also for regenerative processes in general. The data are searchable and publicly accessible via a web-based interface.


Asunto(s)
Análisis de la Célula Individual , Pez Cebra , Animales , Expresión Génica , Perfilación de la Expresión Génica , Cabello , Mamíferos/genética , Pez Cebra/genética
3.
Elife ; 82019 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-30681411

RESUMEN

Loss of sensory hair cells leads to deafness and balance deficiencies. In contrast to mammalian hair cells, zebrafish ear and lateral line hair cells regenerate from poorly characterized support cells. Equally ill-defined is the gene regulatory network underlying the progression of support cells to differentiated hair cells. scRNA-Seq of lateral line organs uncovered five different support cell types, including quiescent and activated stem cells. Ordering of support cells along a developmental trajectory identified self-renewing cells and genes required for hair cell differentiation. scRNA-Seq analyses of fgf3 mutants, in which hair cell regeneration is increased, demonstrates that Fgf and Notch signaling inhibit proliferation of support cells in parallel by inhibiting Wnt signaling. Our scRNA-Seq analyses set the foundation for mechanistic studies of sensory organ regeneration and is crucial for identifying factors to trigger hair cell production in mammals. The data is searchable and publicly accessible via a web-based interface.


Asunto(s)
Proliferación Celular , Factores de Crecimiento de Fibroblastos/metabolismo , Células Ciliadas Auditivas/citología , ARN Citoplasmático Pequeño/genética , Receptores Notch/metabolismo , Transducción de Señal , Células Madre/metabolismo , Animales , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA