RESUMEN
We present a Moiré method that can be used to investigate positional instabilities in a scanning hard x-ray microscope with nanometer precision. The development of diffraction-limited storage rings offering highly-brilliant synchrotron radiation and improvements of nanofocusing x-ray optics paves the way towards 3D nanotomography with 10 nm resolution or below. However, this trend demands improved designs of x-ray microscope instruments which should offer few-nm beam stabilities with respect to the sample. Our technique can measure the position of optics and sample stage relative to each other in the two directions perpendicular to the beam propagation in a scanning x-ray microscope using simple optical components and visible light. The usefulness of the method was proven by measuring short and long term instabilities of a zone-plate-optics-based prototype microscope. We think it can become an important tool for the characterization of scanning x-ray microscopes, especially prior to experiments with an actual x-ray beam.
RESUMEN
BACKGROUND: Breathing signal-guided 4D CT sequence scanning such as the intelligent 4D CT (i4DCT) approach reduces imaging artifacts compared to conventional 4D CT. By design, i4DCT captures entire breathing cycles during beam-on periods, leading to redundant projection data and increased radiation exposure to patients exhibiting prolonged exhalation phases. A recently proposed breathing-guided dose modulation (DM) algorithm promises to lower the imaging dose by temporarily reducing the CT tube current, but the impact on image reconstruction and the resulting images have not been investigated. PURPOSE: We evaluate the impact of breathing signal-guided DM on 4D CT image reconstruction and corresponding images. METHODS: This study is designed as a comparative and retrospective analysis based on 104 4D CT datasets. Each dataset underwent retrospective reconstruction twice: (a) utilizing the acquired clinical projection data for reconstruction, which yields reference image data, and (b) excluding projections acquired during potential DM phases from image reconstruction, resulting in DM-affected image data. Resulting images underwent automatic organ segmentation (lung/liver). (Dis)Similarity of reference and DM-affected images were quantified by the Dice coefficient of the entire organ masks and the organ overlaps within the DM-affected slices. Further, for lung cases, (a) and (b) were deformably registered and median magnitudes of the obtained displacement field were computed. Eventually, for 17 lung cases, gross tumor volumes (GTV) were recontoured on both (a) and (b). Target volume similarity was quantified by the Hausdorff distance. RESULTS: DM resulted in a median imaging dose reduction of 15.4% (interquartile range [IQR]: 11.3%-19.9%) for the present patient cohort. Dice coefficients for lung ( n = 73 $n=73$ ) and liver ( n = 31 $n=31$ ) patients were consistently high for both the entire organs and the DM-affected slices (IQR lung: 0.985 / 0.982 $0.985/0.982$ [entire lung/DM-affected slices only] to 0.992 / 0.989 $0.992/0.989$ ; IQR liver: 0.977 / 0.972 $0.977/0.972$ to 0.986 / 0.986 $0.986/0.986$ ), demonstrating that DM did not cause organ distortions or alterations. Median displacements for DM-affected to reference image registration varied; however, only two out of 73 cases exhibited a median displacement larger than one isotropic 1 mm 3 ${\rm mm}^3$ voxel size. The impact on GTV definition for the end-exhalation phase was also minor (median Hausdorff distance: 0.38 mm, IQR: 0.15-0.46 mm). CONCLUSION: This study demonstrates that breathing signal-guided DM has a minimal impact on image reconstruction and image appearance while improving patient safety by reducing dose exposure.
Asunto(s)
Tomografía Computarizada Cuatridimensional , Procesamiento de Imagen Asistido por Computador , Dosis de Radiación , Respiración , Humanos , Tomografía Computarizada Cuatridimensional/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Estudios Retrospectivos , Pulmón/diagnóstico por imagen , Algoritmos , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/radioterapia , ArtefactosRESUMEN
Proton computed tomography (pCT) is a promising tomographic imaging modality allowing direct reconstruction of proton relative stopping power (RSP) required for proton therapy dose calculation. In this review article, we aim at highlighting the role of Monte Carlo (MC) simulation in pCT studies. After describing the requirements for performing proton computed tomography and the various pCT scanners actively used in recent research projects, we present an overview of available MC simulation platforms. The use of MC simulations in the scope of investigations of image reconstruction, and for the evaluation of optimal RSP accuracy, precision and spatial resolution omitting detector effects is then described. In the final sections of the review article, we present specific applications of realistic MC simulations of an existing pCT scanner prototype, which we describe in detail.
Asunto(s)
Terapia de Protones , Método de Montecarlo , Fantasmas de Imagen , Terapia de Protones/métodos , Protones , Tomografía/métodosRESUMEN
BACKGROUND: Improving the accuracy of relative stopping power (RSP) in proton therapy may allow reducing range margins. Proton computed tomography (pCT) has been shown to provide state-of-the-art RSP accuracy estimation, and various scanner prototypes have recently been built. The different approaches used in scanner design are expected to impact spatial resolution and RSP accuracy. PURPOSE: The goal of this study was to perform the first direct comparison, in terms of spatial resolution and RSP accuracy, of two pCT prototype scanners installed at the same facility and by using the same image reconstruction algorithm. METHODS: A phantom containing cylindrical inserts of known RSP was scanned at the phase-II pCT prototype of the U.S. pCT collaboration and at the commercially oriented ProtonVDA scanner. Following distance-driven binning filtered backprojection reconstruction, the radial edge spread function of high-density inserts was used to estimate the spatial resolution. RSP accuracy was evaluated by the mean absolute percent error (MAPE) over the inserts. No direct imaging dose estimation was possible, which prevented a comparison of the two scanners in terms of RSP noise. RESULTS: In terms of RSP accuracy, both scanners achieved the same MAPE of 0.72% when excluding the porous sinus insert from the evaluation. The ProtonVDA scanner reached a better overall MAPE when all inserts and the body of the phantom were accounted for (0.81%), compared to the phase-II scanner (1.14%). The spatial resolution with the phase-II scanner was found to be 0.61 lp/mm, while for the ProtonVDA scanner somewhat lower at 0.46 lp/mm. CONCLUSIONS: The comparison between two prototype pCT scanners operated in the same clinical facility showed that they both fulfill the requirement of an RSP accuracy of about 1%. Their spatial resolution performance reflects the different design choices of either a scanner with full tracking capabilities (phase-II) or of a more compact tracker system, which only provides the positions of protons but not their directions (ProtonVDA).
Asunto(s)
Terapia de Protones , Protones , Calibración , Procesamiento de Imagen Asistido por Computador/métodos , Fantasmas de Imagen , Terapia de Protones/métodos , Tomógrafos Computarizados por Rayos X , Tomografía Computarizada por Rayos X/métodosRESUMEN
PURPOSE: To reduce image artifacts of proton computed tomography (pCT) from a preclinical scanner, for imaging of the relative stopping power (RSP) needed for particle therapy treatment planning using a simple empirical artifact correction method. METHODS: We adapted and employed a correction method previously used for beam-hardening correction in x-ray CT which makes use of a single scan of a custom-built homogeneous phantom with known RSP. Exploiting the linearity of the filtered backprojection operation, a function was found which corrects water-equivalent path lengths (RSP line integrals) in experimental scans using a prototype pCT scanner. The correction function was applied to projection values of subsequent scans of a homogeneous water phantom, a sensitometric phantom with various inserts and an anthropomorphic head phantom. Data were acquired at two different incident proton energies to test the robustness of the method. RESULTS: Inaccuracies in the detection process caused an offset and known ring artifacts in the water phantom which were considerably reduced using the proposed method. The mean absolute percentage error (MAPE) of mean RSP values of all inserts of the sensitometric phantom and the water phantom was reduced from 0.87% to 0.44% and from 0.86% to 0.48% for the two incident energies respectively. In the head phantom a clear reduction of artifacts was observed. CONCLUSIONS: Image artifacts of experimental pCT scans with a prototype scanner could substantially be reduced both in homogeneous, heterogeneous and anthropomorphic phantoms. RSP accuracy was also improved.
Asunto(s)
Artefactos , Protones , Algoritmos , Procesamiento de Imagen Asistido por Computador , Fantasmas de Imagen , Tomógrafos Computarizados por Rayos X , Tomografía Computarizada por Rayos XRESUMEN
PURPOSE: To reduce imaging artifacts and improve image quality of a specific proton computed tomography (pCT) prototype scanner by combining pCT data acquired at two different incident proton energies to avoid protons stopping in sub-optimal detector sections. METHODS: Image artifacts of a prototype pCT scanner are linked to protons stopping close to internal structures of the scanner's multi-stage energy detector. We aimed at avoiding such protons by acquiring pCT data at two different incident energies and combining the data in post-processing from which artifact-reduced images of the relative stopping power (RSP) were calculated. Energy-modulated pCT (EMpCT) images were assessed visually and quantitatively and compared to the original mono-energetic images in terms of RSP accuracy and noise. Data were acquired for a homogeneous water phantom. RESULTS: RSP images reconstructed from the mono-energetic datasets displayed local image artifacts which were ring-shaped due to the homogeneity of the phantom. The merged EMpCT dataset achieved a superior visual image quality with reduced artifacts and only minor remaining rings. The inter-quartile range (25/75) of RSP values was reduced from 0.7% with the current standard acquisition to 0.2% with EMpCT due to the reduction of ring artifacts. In this study, dose was doubled compared to a standard scan, but we discuss strategies to reduce excess dose. CONCLUSIONS: EMpCT allows to effectively avoid regions of the energy detector that cause image artifacts. Thereby, image quality is improved.
Asunto(s)
Artefactos , Protones , Algoritmos , Calibración , Procesamiento de Imagen Asistido por Computador , Fantasmas de Imagen , Tomografía Computarizada por Rayos XRESUMEN
Proton computed tomography (pCT) has been proposed as an alternative to x-ray computed tomography (CT) for acquiring relative to water stopping power (RSP) maps used for proton treatment planning dose calculations. In parallel, it has been shown that dual energy x-ray CT (DECT) improves RSP accuracy when compared to conventional single energy x-ray CT. This study aimed at directly comparing the RSP accuracy of both modalities using phantoms scanned at an advanced prototype pCT scanner and a state-of-the-art DECT scanner. Two phantoms containing 13 tissue-mimicking inserts of known RSP were scanned at the pCT phase II prototype and a latest generation dual-source DECT scanner (Siemens SOMATOM Definition FORCE). RSP accuracy was compared by mean absolute percent error (MAPE) over all inserts. A highly realistic Monte Carlo (MC) simulation was used to gain insight on pCT image artifacts which degraded MAPE. MAPE was 0.55% for pCT and 0.67% for DECT. The realistic MC simulation agreed well with pCT measurements ([Formula: see text]). Both simulation and experimental results showed ring artifacts in pCT images which degraded the MAPE compared to an ideal pCT simulation ([Formula: see text]). Using the realistic simulation, we could identify sources of artifacts, which are attributed to the interfaces in the five-stage plastic scintillator energy detector and calibration curve interpolation regions. Secondary artifacts stemming from the proton tracker geometry were also identified. The pCT prototype scanner outperformed a state-of-the-art DECT scanner in terms of RSP accuracy (MAPE) for plastic tissue mimicking inserts. Since artifacts tended to concentrate in the inserts, their mitigation may lead to further improvements in the reported pCT accuracy.