RESUMEN
Small-conductance Ca2+-activated K+ channels (SK, KCa2) are gated solely by intracellular microdomain Ca2+. The channel has emerged as a therapeutic target for cardiac arrhythmias. Calmodulin (CaM) interacts with the CaM binding domain (CaMBD) of the SK channels, serving as the obligatory Ca2+ sensor to gate the channels. In heterologous expression systems, phosphatidylinositol 4,5-bisphosphate (PIP2) coordinates with CaM in regulating SK channels. However, the roles and mechanisms of PIP2 in regulating SK channels in cardiomyocytes remain unknown. Here, optogenetics, magnetic nanoparticles, combined with Rosetta structural modeling, and molecular dynamics (MD) simulations revealed the atomistic mechanisms of how PIP2 works in concert with Ca2+-CaM in the SK channel activation. Our computational study affords evidence for the critical role of the amino acid residue R395 in the S6 transmembrane segment, which is localized in propinquity to the intracellular hydrophobic gate. This residue forms a salt bridge with residue E398 in the S6 transmembrane segment from the adjacent subunit. Both R395 and E398 are conserved in all known isoforms of SK channels. Our findings suggest that the binding of PIP2 to R395 residue disrupts the R395:E398 salt bridge, increasing the flexibility of the transmembrane segment S6 and the activation of the channel. Importantly, our findings serve as a platform for testing of structural-based drug designs for therapeutic inhibitors and activators of the SK channel family. The study is timely since inhibitors of SK channels are currently in clinical trials to treat atrial arrhythmias.
Asunto(s)
Calmodulina , Simulación de Dinámica Molecular , Fosfatidilinositol 4,5-Difosfato , Canales de Potasio de Pequeña Conductancia Activados por el Calcio , Fosfatidilinositol 4,5-Difosfato/metabolismo , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/química , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/genética , Animales , Calmodulina/metabolismo , Calmodulina/química , Humanos , Activación del Canal Iónico , Calcio/metabolismo , Unión Proteica , Miocitos Cardíacos/metabolismoRESUMEN
CaV1.2 channels are critical players in cardiac excitation-contraction coupling, yet we do not understand how they are affected by an important therapeutic target of heart failure drugs and regulator of blood pressure, angiotensin II. Signaling through Gq-coupled AT1 receptors, angiotensin II triggers a decrease in PIP2, a phosphoinositide component of the plasma membrane (PM) and known regulator of many ion channels. PIP2 depletion suppresses CaV1.2 currents in heterologous expression systems but the mechanism of this regulation and whether a similar phenomenon occurs in cardiomyocytes is unknown. Previous studies have shown that CaV1.2 currents are also suppressed by angiotensin II. We hypothesized that these two observations are linked and that PIP2 stabilizes CaV1.2 expression at the PM and angiotensin II depresses cardiac excitability by stimulating PIP2 depletion and destabilization of CaV1.2 expression. We tested this hypothesis and report that CaV1.2 channels in tsA201 cells are destabilized after AT1 receptor-triggered PIP2 depletion, leading to their dynamin-dependent endocytosis. Likewise, in cardiomyocytes, angiotensin II decreased t-tubular CaV1.2 expression and cluster size by inducing their dynamic removal from the sarcolemma. These effects were abrogated by PIP2 supplementation. Functional data revealed acute angiotensin II reduced CaV1.2 currents and Ca2+ transient amplitudes thus diminishing excitation-contraction coupling. Finally, mass spectrometry results indicated whole-heart levels of PIP2 are decreased by acute angiotensin II treatment. Based on these observations, we propose a model wherein PIP2 stabilizes CaV1.2 membrane lifetimes, and angiotensin II-induced PIP2 depletion destabilizes sarcolemmal CaV1.2, triggering their removal, and the acute reduction of CaV1.2 currents and contractility.
Asunto(s)
Angiotensina II , Acoplamiento Excitación-Contracción , Células Cultivadas , Angiotensina II/metabolismo , Transducción de Señal , Miocitos Cardíacos/metabolismo , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismoRESUMEN
Cholesterol and phosphoinositides (PI) are two critically important lipids that are found in cellular membranes and dysregulated in many disorders. Therefore, uncovering molecular pathways connecting these essential lipids may offer new therapeutic insights. We report that loss of function of lysosomal Niemann-Pick Type C1 (NPC1) cholesterol transporter, which leads to neurodegenerative NPC disease, initiates a signaling cascade that alters the cholesterol/phosphatidylinositol 4-phosphate (PtdIns4P) countertransport cycle between Golgi-endoplasmic reticulum (ER), as well as lysosome-ER membrane contact sites (MCS). Central to these disruptions is increased recruitment of phosphatidylinositol 4-kinases-PI4KIIα and PI4KIIIß-which boosts PtdIns4P metabolism at Golgi and lysosomal membranes. Aberrantly increased PtdIns4P levels elevate constitutive anterograde secretion from the Golgi complex, and mTORC1 recruitment to lysosomes. NPC1 disease mutations phenocopy the transporter loss of function and can be rescued by inhibition or knockdown of either key phosphoinositide enzymes or their recruiting partners. In summary, we show that the lysosomal NPC1 cholesterol transporter tunes the molecular content of Golgi and lysosome MCS to regulate intracellular trafficking and growth signaling in health and disease.
Asunto(s)
Membrana Celular/metabolismo , Aparato de Golgi/metabolismo , Lisosomas/metabolismo , Proteína Niemann-Pick C1/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Animales , Transporte Biológico/fisiología , Células CHO , Línea Celular , Colesterol/metabolismo , Cricetulus , Retículo Endoplásmico/metabolismo , Células HEK293 , Humanos , Membranas Intracelulares/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Glicoproteínas de Membrana/metabolismo , Ratones , Transducción de Señal/fisiologíaRESUMEN
The number and activity of Cav1.2 channels in the cardiomyocyte sarcolemma tunes the magnitude of Ca2+-induced Ca2+ release and myocardial contraction. ß-Adrenergic receptor (ßAR) activation stimulates sarcolemmal insertion of CaV1.2. This supplements the preexisting sarcolemmal CaV1.2 population, forming large "superclusters" wherein neighboring channels undergo enhanced cooperative-gating behavior, amplifying Ca2+ influx and myocardial contractility. Here, we determine this stimulated insertion is fueled by an internal reserve of early and recycling endosome-localized, presynthesized CaV1.2 channels. ßAR-activation decreased CaV1.2/endosome colocalization in ventricular myocytes, as it triggered "emptying" of endosomal CaV1.2 cargo into the t-tubule sarcolemma. We examined the rapid dynamics of this stimulated insertion process with live-myocyte imaging of channel trafficking, and discovered that CaV1.2 are often inserted into the sarcolemma as preformed, multichannel clusters. Similarly, entire clusters were removed from the sarcolemma during endocytosis, while in other cases, a more incremental process suggested removal of individual channels. The amplitude of the stimulated insertion response was doubled by coexpression of constitutively active Rab4a, halved by coexpression of dominant-negative Rab11a, and abolished by coexpression of dominant-negative mutant Rab4a. In ventricular myocytes, ßAR-stimulated recycling of CaV1.2 was diminished by both nocodazole and latrunculin-A, suggesting an essential role of the cytoskeleton in this process. Functionally, cytoskeletal disruptors prevented ßAR-activated Ca2+ current augmentation. Moreover, ßAR-regulation of CaV1.2 was abolished when recycling was halted by coapplication of nocodazole and latrunculin-A. These findings reveal that ßAR-stimulation triggers an on-demand boost in sarcolemmal CaV1.2 abundance via targeted Rab4a- and Rab11a-dependent insertion of channels that is essential for ßAR-regulation of cardiac CaV1.2.
Asunto(s)
Canales de Calcio Tipo L/metabolismo , Miocitos Cardíacos/metabolismo , Receptores Adrenérgicos beta/metabolismo , Sarcolema/metabolismo , Proteínas de Unión al GTP rab4/metabolismo , Animales , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Línea Celular , Células Cultivadas , Endosomas/metabolismo , Femenino , Ventrículos Cardíacos/citología , Humanos , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/fisiología , Nocodazol/farmacología , Transporte de Proteínas , Tiazolidinas/farmacologíaRESUMEN
Ca2+ is the most ubiquitous second messenger in neurons whose spatial and temporal elevations are tightly controlled to initiate and orchestrate diverse intracellular signaling cascades. Numerous neuropathologies result from mutations or alterations in Ca2+ handling proteins; thus, elucidating molecular pathways that shape Ca2+ signaling is imperative. Here, we report that loss-of-function, knockout, or neurodegenerative disease-causing mutations in the lysosomal cholesterol transporter, Niemann-Pick Type C1 (NPC1), initiate a damaging signaling cascade that alters the expression and nanoscale distribution of IP3R type 1 (IP3R1) in endoplasmic reticulum membranes. These alterations detrimentally increase Gq-protein coupled receptor-stimulated Ca2+ release and spontaneous IP3R1 Ca2+ activity, leading to mitochondrial Ca2+ cytotoxicity. Mechanistically, we find that SREBP-dependent increases in Presenilin 1 (PS1) underlie functional and expressional changes in IP3R1. Accordingly, expression of PS1 mutants recapitulate, while PS1 knockout abrogates Ca2+ phenotypes. These data present a signaling axis that links the NPC1 lysosomal cholesterol transporter to the damaging redistribution and activity of IP3R1 that precipitates cell death in NPC1 disease and suggests that NPC1 is a nanostructural disease.
Asunto(s)
Calcio/metabolismo , Muerte Celular/fisiología , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Mitocondrias/metabolismo , Enfermedad de Niemann-Pick Tipo C/metabolismo , Animales , Transporte Biológico/fisiología , Línea Celular , Colesterol/metabolismo , Retículo Endoplásmico/metabolismo , Femenino , Humanos , Lisosomas/metabolismo , Masculino , Glicoproteínas de Membrana/metabolismo , Ratones , Enfermedades Neurodegenerativas/metabolismo , Neuronas/metabolismo , Presenilina-1/metabolismoRESUMEN
Lysosomes are central regulators of cellular growth and signaling. Once considered the acidic garbage can of the cell, their ever-expanding repertoire of functions include the regulation of cell growth, gene regulation, metabolic signaling, cell migration, and cell death. In this chapter, we detail how another of the lysosome's crucial roles, cholesterol transport, plays a vital role in the control of ion channel function and neuronal excitability through its ability to influence the abundance of the plasma membrane signaling lipid phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). This chapter will introduce the biosynthetic pathways of cholesterol and PI(4,5)P2, discuss the molecular mechanisms through which each lipid distinctly regulates ion channels, and consider the interdependence of these lipids in the control of ion channel function.
Asunto(s)
Canales Iónicos , Fosfatidilinositoles , Canales Iónicos/metabolismo , Transporte Biológico , Fosfatidilinositoles/metabolismo , Colesterol/metabolismo , Lisosomas/metabolismo , Fosfatidilinositol 4,5-Difosfato/genética , Fosfatidilinositol 4,5-Difosfato/metabolismo , Membrana Celular/metabolismoRESUMEN
The association of plasma membrane (PM)-localized voltage-gated potassium (Kv2) channels with endoplasmic reticulum (ER)-localized vesicle-associated membrane protein-associated proteins VAPA and VAPB defines ER-PM junctions in mammalian brain neurons. Here, we used proteomics to identify proteins associated with Kv2/VAP-containing ER-PM junctions. We found that the VAP-interacting membrane-associated phosphatidylinositol (PtdIns) transfer proteins PYK2 N-terminal domain-interacting receptor 2 (Nir2) and Nir3 specifically associate with Kv2.1 complexes. When coexpressed with Kv2.1 and VAPA in HEK293T cells, Nir2 colocalized with cell-surface-conducting and -nonconducting Kv2.1 isoforms. This was enhanced by muscarinic-mediated PtdIns(4,5)P2 hydrolysis, leading to dynamic recruitment of Nir2 to Kv2.1 clusters. In cultured rat hippocampal neurons, exogenously expressed Nir2 did not strongly colocalize with Kv2.1, unless exogenous VAPA was also expressed, supporting the notion that VAPA mediates the spatial association of Kv2.1 and Nir2. Immunolabeling signals of endogenous Kv2.1, Nir2, and VAP puncta were spatially correlated in cultured neurons. Fluorescence-recovery-after-photobleaching experiments revealed that Kv2.1, VAPA, and Nir2 have comparable turnover rates at ER-PM junctions, suggesting that they form complexes at these sites. Exogenous Kv2.1 expression in HEK293T cells resulted in significant differences in the kinetics of PtdIns(4,5)P2 recovery following repetitive muscarinic stimulation, with no apparent impact on resting PtdIns(4,5)P2 or PtdIns(4)P levels. Finally, the brains of Kv2.1-knockout mice had altered composition of PtdIns lipids, suggesting a crucial role for native Kv2.1-containing ER-PM junctions in regulating PtdIns lipid metabolism in brain neurons. These results suggest that ER-PM junctions formed by Kv2 channel-VAP pairing regulate PtdIns lipid homeostasis via VAP-associated PtdIns transfer proteins.
Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas del Ojo/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Neuronas/metabolismo , Fosfatidilinositoles/metabolismo , Canales de Potasio Shab/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animales , Encéfalo/metabolismo , Células HEK293 , Hipocampo/citología , Homeostasis , Humanos , Cinética , Ratones , Ratones Noqueados , Ácidos Fosfatidicos/metabolismo , Proteínas de Transferencia de Fosfolípidos/metabolismo , Fotoblanqueo , Unión Proteica , Multimerización de Proteína , Ratas , Receptores Muscarínicos/metabolismo , Sirolimus/farmacologíaRESUMEN
Polyphosphoinositides (PPIs) are essential phospholipids located in the cytoplasmic leaflet of eukaryotic cell membranes. Despite contributing only a small fraction to the bulk of cellular phospholipids, they make remarkable contributions to practically all aspects of a cell's life and death. They do so by recruiting cytoplasmic proteins/effectors or by interacting with cytoplasmic domains of membrane proteins at the membrane-cytoplasm interface to organize and mold organelle identity. The present study summarizes aspects of our current understanding concerning the metabolism, manipulation, measurement, and intimate roles these lipids play in regulating membrane homeostasis and vital cell signaling reactions in health and disease.
Asunto(s)
Membrana Celular/metabolismo , Proteínas de la Membrana/metabolismo , Fosfatidilinositoles/metabolismo , Transducción de Señal , Animales , HumanosRESUMEN
KEY POINTS: Prevailing dogma holds that activation of the ß-adrenergic receptor/cAMP/protein kinase A signalling pathway leads to enhanced L-type CaV 1.2 channel activity, resulting in increased Ca2+ influx into ventricular myocytes and a positive inotropic response. However, the full mechanistic and molecular details underlying this phenomenon are incompletely understood. CaV 1.2 channel clusters decorate T-tubule sarcolemmas of ventricular myocytes. Within clusters, nanometer proximity between channels permits Ca2+ -dependent co-operative gating behaviour mediated by physical interactions between adjacent channel C-terminal tails. We report that stimulation of cardiomyocytes with isoproterenol, evokes dynamic, protein kinase A-dependent augmentation of CaV 1.2 channel abundance along cardiomyocyte T-tubules, resulting in the appearance of channel 'super-clusters', and enhanced channel co-operativity that amplifies Ca2+ influx. On the basis of these data, we suggest a new model in which a sub-sarcolemmal pool of pre-synthesized CaV 1.2 channels resides in cardiomyocytes and can be mobilized to the membrane in times of high haemodynamic or metabolic demand, to tune excitation-contraction coupling. ABSTRACT: Voltage-dependent L-type CaV 1.2 channels play an indispensable role in cardiac excitation-contraction coupling. Activation of the ß-adrenergic receptor (ßAR)/cAMP/protein kinase A (PKA) signalling pathway leads to enhanced CaV 1.2 activity, resulting in increased Ca2+ influx into ventricular myocytes and a positive inotropic response. CaV 1.2 channels exhibit a clustered distribution along the T-tubule sarcolemma of ventricular myocytes where nanometer proximity between channels permits Ca2+ -dependent co-operative gating behaviour mediated by dynamic, physical, allosteric interactions between adjacent channel C-terminal tails. This amplifies Ca2+ influx and augments myocyte Ca2+ transient and contraction amplitudes. We investigated whether ßAR signalling could alter CaV 1.2 channel clustering to facilitate co-operative channel interactions and elevate Ca2+ influx in ventricular myocytes. Bimolecular fluorescence complementation experiments reveal that the ßAR agonist, isoproterenol (ISO), promotes enhanced CaV 1.2-CaV 1.2 physical interactions. Super-resolution nanoscopy and dynamic channel tracking indicate that these interactions are expedited by enhanced spatial proximity between channels, resulting in the appearance of CaV 1.2 'super-clusters' along the z-lines of ISO-stimulated cardiomyocytes. The mechanism that leads to super-cluster formation involves rapid, dynamic augmentation of sarcolemmal CaV 1.2 channel abundance after ISO application. Optical and electrophysiological single channel recordings confirm that these newly inserted channels are functional and contribute to overt co-operative gating behaviour of CaV 1.2 channels in ISO stimulated myocytes. The results of the present study reveal a new facet of ßAR-mediated regulation of CaV 1.2 channels in the heart and support the novel concept that a pre-synthesized pool of sub-sarcolemmal CaV 1.2 channel-containing vesicles/endosomes resides in cardiomyocytes and can be mobilized to the sarcolemma to tune excitation-contraction coupling to meet metabolic and/or haemodynamic demands.
Asunto(s)
Canales de Calcio Tipo L/fisiología , Miocitos Cardíacos/fisiología , Receptores Adrenérgicos beta/fisiología , Agonistas Adrenérgicos beta/farmacología , Animales , Línea Celular , Femenino , Ventrículos Cardíacos/citología , Humanos , Isoproterenol/farmacología , Masculino , Ratones Endogámicos C57BL , Sarcolema/fisiologíaRESUMEN
A set of novel Kv7.2/7.3 (KCNQ2/3) channel blockers was synthesized to address several liabilities of the known compounds XE991 (metabolic instability and CYP inhibition) and the clinical compound DMP 543 (acid instability, insolubility, and lipophilicity). Using the anthrone scaffold of the prior channel blockers, alternative heteroarylmethyl substituents were installed via enolate alkylation reactions. Incorporation of a pyridazine and a fluorinated pyridine gave an analog (compound 18, JDP-107) with a promising combination of potency (IC50â¯=â¯0.16⯵M in a Kv7.2 thallium flux assay), efficacy in a Kv7.2/7.3 patch clamp assay, and drug-like properties.
Asunto(s)
Antracenos/farmacología , Canal de Potasio KCNQ2/antagonistas & inhibidores , Canal de Potasio KCNQ3/antagonistas & inhibidores , Trastornos Mentales/tratamiento farmacológico , Enfermedades Neurodegenerativas/tratamiento farmacológico , Bloqueadores de los Canales de Potasio/farmacología , Antracenos/síntesis química , Antracenos/química , Relación Dosis-Respuesta a Droga , Canal de Potasio KCNQ2/metabolismo , Canal de Potasio KCNQ3/metabolismo , Estructura Molecular , Bloqueadores de los Canales de Potasio/síntesis química , Bloqueadores de los Canales de Potasio/química , Relación Estructura-ActividadRESUMEN
Phosphoinositides are rapidly turning-over phospholipids that play key roles in intracellular signaling and modulation of membrane effectors. Through technical refinements we have improved sensitivity in the analysis of the phosphoinositide PI, PIP, and PIP2 pools from living cells using mass spectrometry. This has permitted further resolution in phosphoinositide lipidomics from cell cultures and small samples of tissue. The technique includes butanol extraction, derivatization of the lipids, post-column infusion of sodium to stabilize formation of sodiated adducts, and electrospray ionization mass spectrometry in multiple reaction monitoring mode, achieving a detection limit of 20pg. We describe the spectrum of fatty-acyl chains in the cellular phosphoinositides. Consistent with previous work in other mammalian primary cells, the 38:4 fatty-acyl chains dominate in the phosphoinositides of the pineal gland and of superior cervical ganglia, and many additional fatty acid combinations are found at low abundance. However, Chinese hamster ovary cells and human embryonic kidney cells (tsA201) in culture have different fatty-acyl chain profiles that change with growth state. Their 38:4 lipids lose their dominance as cultures approach confluence. The method has good time resolution and follows well the depletion in <20s of both PIP2 and PIP that results from strong activation of Gq-coupled receptors. The receptor-activated phospholipase C exhibits no substrate selectivity among the various fatty-acyl chain combinations.
Asunto(s)
Ácidos Grasos/aislamiento & purificación , Fosfatidilinositoles/aislamiento & purificación , Fosfolípidos/aislamiento & purificación , Espectrometría de Masa por Ionización de Electrospray/métodos , Animales , Células CHO , Cricetinae , Cricetulus , Ácidos Grasos/química , Humanos , Fosfatidilinositoles/química , Fosfolípidos/química , Transducción de SeñalRESUMEN
Cells that have intrinsic electrical excitability utilize changes in membrane potential to communicate with neighboring cells and initiate cellular cascades. Excitable cells like neurons and myocytes have evolved highly specialized subcellular architectures to translate these electrical signals into cellular events. One such structural specialization is sarco-/endoplasmic reticulum-plasma membrane contact sites. These membrane contact sites are positioned by specific membrane-membrane tethering proteins and contain an ever-expanding list of additional proteins that organize information transfer across the junctional space (~ 15-25 nm distance) to shape membrane identity and control cellular excitability. In this chapter we discuss how contacts between the sarco-/endoplasmic reticulum and plasma membrane are essential for regulated excitation-contraction coupling in striated muscle and control of lipid-dependent ion channels.
Asunto(s)
Retículo Endoplásmico/metabolismo , Acoplamiento Excitación-Contracción , Membranas Intracelulares/metabolismo , Microdominios de Membrana/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Contracción Miocárdica , Miocitos Cardíacos/metabolismo , Animales , Humanos , Activación del Canal Iónico , Canales Iónicos/química , Canales Iónicos/metabolismo , Lípidos de la Membrana/metabolismo , Proteínas de Transporte de Membrana/química , Conformación Proteica , Retículo Sarcoplasmático/metabolismo , Relación Estructura-ActividadRESUMEN
Plasma membrane (PM) phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] regulates the activity of many ion channels and other membrane-associated proteins. To determine precursor sources of the PM PI(4,5)P2 pool in tsA-201 cells, we monitored KCNQ2/3 channel currents and translocation of PHPLCδ1 domains as real-time indicators of PM PI(4,5)P2, and translocation of PHOSH2×2, and PHOSH1 domains as indicators of PM and Golgi phosphatidylinositol 4-phosphate [PI(4)P], respectively. We selectively depleted PI(4)P pools at the PM, Golgi, or both using the rapamycin-recruitable lipid 4-phosphatases. Depleting PI(4)P at the PM with a recruitable 4-phosphatase (Sac1) results in a decrease of PI(4,5)P2 measured by electrical or optical indicators. Depleting PI(4)P at the Golgi with the 4-phosphatase or disrupting membrane-transporting motors induces a decline in PM PI(4,5)P2. Depleting PI(4)P simultaneously at both the Golgi and the PM induces a larger decrease of PI(4,5)P2. The decline of PI(4,5)P2 following 4-phosphatase recruitment takes 1-2 min. Recruiting the endoplasmic reticulum (ER) toward the Golgi membranes mimics the effects of depleting PI(4)P at the Golgi, apparently due to the trans actions of endogenous ER Sac1. Thus, maintenance of the PM pool of PI(4,5)P2 appears to depend on precursor pools of PI(4)P both in the PM and in the Golgi. The decrease in PM PI(4,5)P2 when Sac1 is recruited to the Golgi suggests that the Golgi contribution is ongoing and that PI(4,5)P2 production may be coupled to important cell biological processes such as membrane trafficking or lipid transfer activity.
Asunto(s)
Membrana Celular/metabolismo , Aparato de Golgi/metabolismo , Canal de Potasio KCNQ2/fisiología , Canal de Potasio KCNQ3/fisiología , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatidilinositoles/metabolismo , 1-Fosfatidilinositol 4-Quinasa/metabolismo , Androstadienos/farmacología , Células Cultivadas , Humanos , Riñón/citología , Potenciales de la Membrana/fisiología , Miosina Tipo II/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , WortmaninaRESUMEN
Phosphoinositides serve as signature motifs for different cellular membranes and often are required for the function of membrane proteins. Here, we summarize clear evidence supporting the concept that many ion channels are regulated by membrane phosphoinositides. We describe tools used to test their dependence on phosphoinositides, especially phosphatidylinositol 4,5-bisphosphate, and consider mechanisms and biological meanings of phosphoinositide regulation of ion channels. This lipid regulation can underlie changes of channel activity and electrical excitability in response to receptors. Since different intracellular membranes have different lipid compositions, the activity of ion channels still in transit towards their final destination membrane may be suppressed until they reach an optimal lipid environment. This article is part of a Special Issue entitled Phosphoinositides.
Asunto(s)
Canales de Calcio/metabolismo , Canales de Cloruro/metabolismo , Canales Epiteliales de Sodio/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Canales de Potasio/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo , Canales de Calcio/genética , Membrana Celular/química , Membrana Celular/metabolismo , Canales de Cloruro/genética , Canales Epiteliales de Sodio/genética , Regulación de la Expresión Génica , Humanos , Transporte Iónico , Canales de Potasio/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Canales de Potencial de Receptor Transitorio/genética , Fosfolipasas de Tipo C/genética , Fosfolipasas de Tipo C/metabolismoRESUMEN
Effective cellular function requires both compartmentalization of tasks in space and time, and coordination of those efforts. The endoplasmic reticulum's (ER) expansive and ramifying structure makes it ideally suited to serve as a regulatory platform for organelle-organelle communication through membrane contacts. These contact sites consist of two membranes juxtaposed at a distance less than 30 nm that mediate the exchange of lipids and ions without the need for membrane fission or fusion, a process distinct from classical vesicular transport. Membrane contact sites are positioned by organelle-specific membrane-membrane tethering proteins and contain a growing number of additional proteins that organize information transfer to shape membrane identity. Here we briefly review the role of ER-containing membrane junctions in two important cellular functions: calcium signalling and phosphoinositide processing.
Asunto(s)
Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Orgánulos/metabolismo , Fosfatidilinositoles/metabolismoRESUMEN
Secretory granules (SGs) sequester significant calcium. Understanding roles for this calcium and potential mechanisms of release is hampered by the difficulty of measuring SG calcium directly in living cells. We adapted the Förster resonance energy transfer-based D1-endoplasmic reticulum (ER) probe to develop a unique probe (D1-SG) to measure calcium and pH in secretory granules. It significantly localizes to SGs and reports resting free Ca(2+) of 69 ± 15 µM and a pH of 5.8. Application of extracellular ATP to activate P2Y receptors resulted in a slow monotonic decrease in SG Ca(2+) temporally correlated with the occurrence of store-operated calcium entry (SOCE). Further investigation revealed a unique receptor-mediated mechanism of calcium release from SGs that involves SG store-operated Orai channels activated by their regulator stromal interaction molecule 1 (STIM1) on the ER. SG Ca(2+) release is completely antagonized by a SOCE antagonist, by switching to Ca(2+)-free medium, and by overexpression of a dominant-negative Orai1(E106A). Overexpression of the CRAC activation domain (CAD) of STIM1 resulted in a decrease of resting SG Ca(2+) by â¼75% and completely abolished the ATP-mediated release of Ca(2+) from SGs. Overexpression of a dominant-negative CAD construct(CAD-A376K) induced no significant changes in SG Ca(2+). Colocalization analysis suggests that, like the plasma membrane, SG membranes also possess Orai1 channels and that during SG Ca(2+) release, colocalization between SGs and STIM1 increases. We propose Orai channel opening on SG membranes as a potential mode of calcium release from SGs that may serve to raise local cytoplasmic calcium concentrations and aid in refilling intracellular calcium stores of the ER and exocytosis.
Asunto(s)
Canales de Calcio/fisiología , Calcio/metabolismo , Proteínas de la Membrana/fisiología , Proteínas de Neoplasias/fisiología , Vesículas Secretoras/metabolismo , Calcio/química , Señalización del Calcio/fisiología , Línea Celular Tumoral , Membrana Celular/metabolismo , Citoplasma/metabolismo , Retículo Endoplásmico/metabolismo , Exocitosis , Humanos , Concentración de Iones de Hidrógeno , Modelos Biológicos , Proteína ORAI1 , Fotoquímica/métodos , Molécula de Interacción Estromal 1RESUMEN
Phosphoinositides (PIs) are lipid components of cell membranes that regulate a wide variety of cellular functions. Here we exploited the blue light-induced dimerization between two plant proteins, cryptochrome 2 (CRY2) and the transcription factor CIBN, to control plasma membrane PI levels rapidly, locally, and reversibly. The inositol 5-phosphatase domain of OCRL (5-ptase(OCRL)), which acts on PI(4,5)P(2) and PI(3,4,5)P(3), was fused to the photolyase homology region domain of CRY2, and the CRY2-binding domain, CIBN, was fused to plasma membrane-targeting motifs. Blue-light illumination (458-488 nm) of mammalian cells expressing these constructs resulted in nearly instantaneous recruitment of 5-ptase(OCRL) to the plasma membrane, where it caused rapid (within seconds) and reversible (within minutes) dephosphorylation of its targets as revealed by diverse cellular assays: dissociation of PI(4,5)P(2) and PI(3,4,5)P(3) biosensors, disappearance of endocytic clathrin-coated pits, nearly complete inhibition of KCNQ2/3 channel currents, and loss of membrane ruffling. Focal illumination resulted in local and transient 5-ptase(OCRL) recruitment and PI(4,5)P(2) dephosphorylation, causing not only local collapse and retraction of the cell edge or process but also compensatory accumulation of the PI(4,5)P(2) biosensor and membrane ruffling at the opposite side of the cells. Using the same approach for the recruitment of PI3K, local PI(3,4,5)P(3) synthesis and membrane ruffling could be induced, with corresponding loss of ruffling distally to the illuminated region. This technique provides a powerful tool for dissecting with high spatial-temporal kinetics the cellular functions of various PIs and reversibly controlling the functions of downstream effectors of these signaling lipids.
Asunto(s)
Endocitosis/fisiología , Endocitosis/efectos de la radiación , Luz , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatidilinositoles/metabolismo , Actinas/metabolismo , Secuencias de Aminoácidos/fisiología , Animales , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sitios de Unión/fisiología , Células COS , Membrana Celular/metabolismo , Membrana Celular/efectos de la radiación , Chlorocebus aethiops , Criptocromos/genética , Criptocromos/metabolismo , Humanos , Canal de Potasio KCNQ2/fisiología , Canal de Potasio KCNQ3/fisiología , Potenciales de la Membrana/fisiología , Potenciales de la Membrana/efectos de la radiación , Células PC12 , Fosfatidilinositol 3-Quinasas/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Fosforilación/fisiología , Fosforilación/efectos de la radiación , Ratas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal/fisiología , Transducción de Señal/efectos de la radiaciónRESUMEN
Cholesterol and calcium play crucial roles as integral structural components and functional signaling entities within the central nervous system. Disruption in cholesterol homeostasis has been linked to Alzheimer's, Parkinson's, and Huntington's Disease while alterations in calcium signaling is hypothesized to be a key substrate for neurodegeneration across many disorders. Despite the importance of regulated cholesterol and calcium homeostasis for brain health there has been an absence of research investigating the interdependence of these signaling molecules and how they can tune each other's abundance at membranes to influence membrane identity. Here, we discuss the role of cholesterol in shaping calcium dynamics in a neurodegenerative disorder that arises due to mutations in the lysosomal cholesterol transporter, Niemann Pick Type C1 (NPC1). We discuss the molecular mechanisms through which altered lysosomal cholesterol transport influences calcium signaling pathways through remodeling of ion channel distribution at organelle-organelle membrane contacts leading to neurodegeneration. This scientific inquiry not only sheds light on NPC disease but also holds implications for comprehending other cholesterol-associated neurodegenerative disorders.
RESUMEN
The L-type Ca 2+ channel (Ca V 1.2) is essential for cardiac excitation-contraction coupling. To contribute to the inward Ca 2+ flux that drives Ca 2+ -induced-Ca 2+ -release, Ca V 1.2 channels must be expressed on the sarcolemma; thus the regulatory mechanisms that tune Ca V 1.2 expression to meet contractile demand are an emerging area of research. A ubiquitously expressed protein called 14-3-3 has been proposed to affect Ca 2+ channel trafficking in non-myocytes, however whether 14-3-3 has similar effects on Ca V 1.2 in cardiomyocytes is unknown. 14-3-3 preferentially binds phospho-serine/threonine residues to affect many cellular processes and is known to regulate cardiac ion channels including Na V 1.5 and hERG. Altered 14-3-3 expression and function have been implicated in cardiac pathologies including hypertrophy. Accordingly, we tested the hypothesis that 14-3-3 interacts with Ca V 1.2 in a phosphorylation-dependent manner and regulates cardiac Ca V 1.2 trafficking and recycling. Confocal imaging, proximity ligation assays, super-resolution imaging, and co-immunoprecipitation revealed a population of 14-3-3 colocalized and closely associated with Ca V 1.2. The degree of 14-3-3/Ca V 1.2 colocalization increased upon stimulation of ß -adrenergic receptors with isoproterenol. Notably, only the 14-3-3-associated Ca V 1.2 population displayed increased cluster size with isoproterenol, revealing a role for 14-3-3 as a nucleation factor that directs Ca V 1.2 super-clustering. 14-3-3 overexpression increased basal Ca V 1.2 cluster size and Ca 2+ currents in ventricular myocytes, with maintained channel responsivity to isoproterenol. In contrast, isoproterenol-stimulated augmentation of sarcolemmal Ca V 1.2 expression and currents in ventricular myocytes were abrogated by 14-3-3 inhibition. These data support a model where 14-3-3 interacts with Ca V 1.2 in a phosphorylation-dependent manner to promote enhanced trafficking/recycling, clustering, and activity during ß -adrenergic stimulation. Significance Statement: The L-type Ca 2+ channel, Ca V 1.2, plays an essential role in excitation-contraction coupling in the heart and in part regulates the overall strength of contraction during basal and fight- or-flight ß -adrenergic signaling conditions. Proteins that modulate the trafficking and/or activity of Ca V 1.2 are interesting both from a physiological and pathological perspective, since alterations in Ca V 1.2 can impact action potential duration and cause arrythmias. A small protein called 14-3-3 regulates other ion channels in the heart and other Ca 2+ channels, but how it may interact with Ca V 1.2 in the heart has never been studied. Examining factors that affect Ca V 1.2 at rest and during ß -adrenergic stimulation is crucial for our ability to understand and treat disease and aging conditions where these pathways are altered.
RESUMEN
Cardiac dysfunction is a hallmark of aging in humans and mice. Here we report that a two-week treatment to restore youthful Bridging Integrator 1 (BIN1) levels in the hearts of 24-month-old mice rejuvenates cardiac function and substantially reverses the aging phenotype. Our data indicate that age-associated overexpression of BIN1 occurs alongside dysregulated endosomal recycling and disrupted trafficking of cardiac CaV1.2 and type 2 ryanodine receptors. These deficiencies affect channel function at rest and their upregulation during acute stress. In vivo echocardiography reveals reduced systolic function in old mice. BIN1 knockdown using an adeno-associated virus serotype 9 packaged shRNA-mBIN1 restores the nanoscale distribution and clustering plasticity of ryanodine receptors and recovers Ca2+ transient amplitudes and cardiac systolic function toward youthful levels. Enhanced systolic function correlates with increased phosphorylation of the myofilament protein cardiac myosin binding protein-C. These results reveal BIN1 knockdown as a novel therapeutic strategy to rejuvenate the aging myocardium.