Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Am J Hum Genet ; 108(7): 1169-1189, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34038741

RESUMEN

Identifying the molecular mechanisms by which genome-wide association study (GWAS) loci influence traits remains challenging. Chromatin accessibility quantitative trait loci (caQTLs) help identify GWAS loci that may alter GWAS traits by modulating chromatin structure, but caQTLs have been identified in a limited set of human tissues. Here we mapped caQTLs in human liver tissue in 20 liver samples and identified 3,123 caQTLs. The caQTL variants are enriched in liver tissue promoter and enhancer states and frequently disrupt binding motifs of transcription factors expressed in liver. We predicted target genes for 861 caQTL peaks using proximity, chromatin interactions, correlation with promoter accessibility or gene expression, and colocalization with expression QTLs. Using GWAS signals for 19 liver function and/or cardiometabolic traits, we identified 110 colocalized caQTLs and GWAS signals, 56 of which contained a predicted caPeak target gene. At the LITAF LDL-cholesterol GWAS locus, we validated that a caQTL variant showed allelic differences in protein binding and transcriptional activity. These caQTLs contribute to the epigenomic characterization of human liver and help identify molecular mechanisms and genes at GWAS loci.


Asunto(s)
Cromatina/metabolismo , Hígado/metabolismo , Sitios de Carácter Cuantitativo , Secuencias de Aminoácidos , Sitios de Unión , Ensamble y Desensamble de Cromatina , Elementos de Facilitación Genéticos , Variación Genética , Estudio de Asociación del Genoma Completo , Humanos , Regiones Promotoras Genéticas , Unión Proteica , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Transcriptoma
2.
Heredity (Edinb) ; 129(3): 183-194, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35764696

RESUMEN

House mice (Mus musculus) have spread globally as a result of their commensal relationship with humans. In the form of laboratory strains, both inbred and outbred, they are also among the most widely used model organisms in biomedical research. Although the general outlines of house mouse dispersal and population structure are well known, details have been obscured by either limited sample size or small numbers of markers. Here we examine ancestry, population structure, and inbreeding using SNP microarray genotypes in a cohort of 814 wild mice spanning five continents and all major subspecies of Mus, with a focus on M. m. domesticus. We find that the major axis of genetic variation in M. m. domesticus is a south-to-north gradient within Europe and the Mediterranean. The dominant ancestry component in North America, Australia, New Zealand, and various small offshore islands are of northern European origin. Next we show that inbreeding is surprisingly pervasive and highly variable, even between nearby populations. By inspecting the length distribution of homozygous segments in individual genomes, we find that inbreeding in commensal populations is mostly due to consanguinity. Our results offer new insight into the natural history of an important model organism for medicine and evolutionary biology.


Asunto(s)
Genoma , Endogamia , Animales , Evolución Biológica , Europa (Continente) , Humanos , Ratones , Nueva Zelanda
3.
Proc Natl Acad Sci U S A ; 116(22): 10883-10888, 2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-31076557

RESUMEN

We integrate comeasured gene expression and DNA methylation (DNAme) in 265 human skeletal muscle biopsies from the FUSION study with >7 million genetic variants and eight physiological traits: height, waist, weight, waist-hip ratio, body mass index, fasting serum insulin, fasting plasma glucose, and type 2 diabetes. We find hundreds of genes and DNAme sites associated with fasting insulin, waist, and body mass index, as well as thousands of DNAme sites associated with gene expression (eQTM). We find that controlling for heterogeneity in tissue/muscle fiber type reduces the number of physiological trait associations, and that long-range eQTMs (>1 Mb) are reduced when controlling for tissue/muscle fiber type or latent factors. We map genetic regulators (quantitative trait loci; QTLs) of expression (eQTLs) and DNAme (mQTLs). Using Mendelian randomization (MR) and mediation techniques, we leverage these genetic maps to predict 213 causal relationships between expression and DNAme, approximately two-thirds of which predict methylation to causally influence expression. We use MR to integrate FUSION mQTLs, FUSION eQTLs, and GTEx eQTLs for 48 tissues with genetic associations for 534 diseases and quantitative traits. We identify hundreds of genes and thousands of DNAme sites that may drive the reported disease/quantitative trait genetic associations. We identify 300 gene expression MR associations that are present in both FUSION and GTEx skeletal muscle and that show stronger evidence of MR association in skeletal muscle than other tissues, which may partially reflect differences in power across tissues. As one example, we find that increased RXRA muscle expression may decrease lean tissue mass.


Asunto(s)
Metilación de ADN/genética , Expresión Génica/genética , Músculo Esquelético , Glucemia/análisis , Pesos y Medidas Corporales , Diabetes Mellitus Tipo 2 , Estudio de Asociación del Genoma Completo/métodos , Genómica/métodos , Humanos , Insulina/análisis , Músculo Esquelético/química , Músculo Esquelético/fisiología , Sitios de Carácter Cuantitativo/genética
4.
Proc Natl Acad Sci U S A ; 114(9): 2301-2306, 2017 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-28193859

RESUMEN

Genome-wide association studies (GWAS) have identified >100 independent SNPs that modulate the risk of type 2 diabetes (T2D) and related traits. However, the pathogenic mechanisms of most of these SNPs remain elusive. Here, we examined genomic, epigenomic, and transcriptomic profiles in human pancreatic islets to understand the links between genetic variation, chromatin landscape, and gene expression in the context of T2D. We first integrated genome and transcriptome variation across 112 islet samples to produce dense cis-expression quantitative trait loci (cis-eQTL) maps. Additional integration with chromatin-state maps for islets and other diverse tissue types revealed that cis-eQTLs for islet-specific genes are specifically and significantly enriched in islet stretch enhancers. High-resolution chromatin accessibility profiling using assay for transposase-accessible chromatin sequencing (ATAC-seq) in two islet samples enabled us to identify specific transcription factor (TF) footprints embedded in active regulatory elements, which are highly enriched for islet cis-eQTL. Aggregate allelic bias signatures in TF footprints enabled us de novo to reconstruct TF binding affinities genetically, which support the high-quality nature of the TF footprint predictions. Interestingly, we found that T2D GWAS loci were strikingly and specifically enriched in islet Regulatory Factor X (RFX) footprints. Remarkably, within and across independent loci, T2D risk alleles that overlap with RFX footprints uniformly disrupt the RFX motifs at high-information content positions. Together, these results suggest that common regulatory variations have shaped islet TF footprints and the transcriptome and that a confluent RFX regulatory grammar plays a significant role in the genetic component of T2D predisposition.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Predisposición Genética a la Enfermedad , Genoma Humano , Islotes Pancreáticos/metabolismo , Sitios de Carácter Cuantitativo , Transcriptoma , Alelos , Secuencia de Bases , Sitios de Unión , Cromatina/química , Cromatina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Epigénesis Genética , Perfilación de la Expresión Génica , Variación Genética , Estudio de Asociación del Genoma Completo , Impresión Genómica , Humanos , Islotes Pancreáticos/patología , Polimorfismo de Nucleótido Simple , Unión Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Factores de Transcripción del Factor Regulador X/genética , Factores de Transcripción del Factor Regulador X/metabolismo
5.
BMC Genomics ; 19(1): 390, 2018 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-29792182

RESUMEN

BACKGROUND: Bisulfite sequencing is widely employed to study the role of DNA methylation in disease; however, the data suffer from biases due to coverage depth variability. Imputation of methylation values at low-coverage sites may mitigate these biases while also identifying important genomic features associated with predictive power. RESULTS: Here we describe BoostMe, a method for imputing low-quality DNA methylation estimates within whole-genome bisulfite sequencing (WGBS) data. BoostMe uses a gradient boosting algorithm, XGBoost, and leverages information from multiple samples for prediction. We find that BoostMe outperforms existing algorithms in speed and accuracy when applied to WGBS of human tissues. Furthermore, we show that imputation improves concordance between WGBS and the MethylationEPIC array at low WGBS depth, suggesting improved WGBS accuracy after imputation. CONCLUSIONS: Our findings support the use of BoostMe as a preprocessing step for WGBS analysis.


Asunto(s)
Biología Computacional/métodos , Metilación de ADN/efectos de los fármacos , Sulfitos/farmacología , Secuenciación Completa del Genoma , Algoritmos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos
6.
PLoS Genet ; 11(2): e1004850, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25679959

RESUMEN

Significant departures from expected Mendelian inheritance ratios (transmission ratio distortion, TRD) are frequently observed in both experimental crosses and natural populations. TRD on mouse Chromosome (Chr) 2 has been reported in multiple experimental crosses, including the Collaborative Cross (CC). Among the eight CC founder inbred strains, we found that Chr 2 TRD was exclusive to females that were heterozygous for the WSB/EiJ allele within a 9.3 Mb region (Chr 2 76.9 - 86.2 Mb). A copy number gain of a 127 kb-long DNA segment (designated as responder to drive, R2d) emerged as the strongest candidate for the causative allele. We mapped R2d sequences to two loci within the candidate interval. R2d1 is located near the proximal boundary, and contains a single copy of R2d in all strains tested. R2d2 maps to a 900 kb interval, and the number of R2d copies varies from zero in classical strains (including the mouse reference genome) to more than 30 in wild-derived strains. Using real-time PCR assays for the copy number, we identified a mutation (R2d2WSBdel1) that eliminates the majority of the R2d2WSB copies without apparent alterations of the surrounding WSB/EiJ haplotype. In a three-generation pedigree segregating for R2d2WSBdel1, the mutation is transmitted to the progeny and Mendelian segregation is restored in females heterozygous for R2d2WSBdel1, thus providing direct evidence that the copy number gain is causal for maternal TRD. We found that transmission ratios in R2d2WSB heterozygous females vary between Mendelian segregation and complete distortion depending on the genetic background, and that TRD is under genetic control of unlinked distorter loci. Although the R2d2WSB transmission ratio was inversely correlated with average litter size, several independent lines of evidence support the contention that female meiotic drive is the cause of the distortion. We discuss the implications and potential applications of this novel meiotic drive system.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Genómica , Patrón de Herencia/genética , Meiosis/genética , Alelos , Animales , Cromosomas/genética , Cruzamientos Genéticos , Femenino , Técnicas de Genotipaje , Haplotipos/genética , Masculino , Ratones , Mutación
7.
Mol Biol Evol ; 33(6): 1381-95, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26882987

RESUMEN

A selective sweep is the result of strong positive selection driving newly occurring or standing genetic variants to fixation, and can dramatically alter the pattern and distribution of allelic diversity in a population. Population-level sequencing data have enabled discoveries of selective sweeps associated with genes involved in recent adaptations in many species. In contrast, much debate but little evidence addresses whether "selfish" genes are capable of fixation-thereby leaving signatures identical to classical selective sweeps-despite being neutral or deleterious to organismal fitness. We previously described R2d2, a large copy-number variant that causes nonrandom segregation of mouse Chromosome 2 in females due to meiotic drive. Here we show population-genetic data consistent with a selfish sweep driven by alleles of R2d2 with high copy number (R2d2(HC)) in natural populations. We replicate this finding in multiple closed breeding populations from six outbred backgrounds segregating for R2d2 alleles. We find that R2d2(HC) rapidly increases in frequency, and in most cases becomes fixed in significantly fewer generations than can be explained by genetic drift. R2d2(HC) is also associated with significantly reduced litter sizes in heterozygous mothers, making it a true selfish allele. Our data provide direct evidence of populations actively undergoing selfish sweeps, and demonstrate that meiotic drive can rapidly alter the genomic landscape in favor of mutations with neutral or even negative effects on overall Darwinian fitness. Further study will reveal the incidence of selfish sweeps, and will elucidate the relative contributions of selfish genes, adaptation and genetic drift to evolution.


Asunto(s)
Proteínas Nucleares/genética , Proteínas de Unión al ARN/genética , Secuencias Repetitivas de Ácidos Nucleicos , Adaptación Fisiológica/genética , Alelos , Animales , Evolución Biológica , Variaciones en el Número de Copia de ADN/genética , Evolución Molecular , Femenino , Variación Genética , Genética de Población , Masculino , Ratones , Modelos Genéticos , Mutación , Selección Genética
8.
PLoS Genet ; 9(10): e1003853, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24098153

RESUMEN

X chromosome inactivation (XCI) is the mammalian mechanism of dosage compensation that balances X-linked gene expression between the sexes. Early during female development, each cell of the embryo proper independently inactivates one of its two parental X-chromosomes. In mice, the choice of which X chromosome is inactivated is affected by the genotype of a cis-acting locus, the X-chromosome controlling element (Xce). Xce has been localized to a 1.9 Mb interval within the X-inactivation center (Xic), yet its molecular identity and mechanism of action remain unknown. We combined genotype and sequence data for mouse stocks with detailed phenotyping of ten inbred strains and with the development of a statistical model that incorporates phenotyping data from multiple sources to disentangle sources of XCI phenotypic variance in natural female populations on X inactivation. We have reduced the Xce candidate 10-fold to a 176 kb region located approximately 500 kb proximal to Xist. We propose that structural variation in this interval explains the presence of multiple functional Xce alleles in the genus Mus. We have identified a new allele, Xce(e) present in Mus musculus and a possible sixth functional allele in Mus spicilegus. We have also confirmed a parent-of-origin effect on X inactivation choice and provide evidence that maternal inheritance magnifies the skewing associated with strong Xce alleles. Based on the phylogenetic analysis of 155 laboratory strains and wild mice we conclude that Xce(a) is either a derived allele that arose concurrently with the domestication of fancy mice but prior the derivation of most classical inbred strains or a rare allele in the wild. Furthermore, we have found that despite the presence of multiple haplotypes in the wild Mus musculus domesticus has only one functional Xce allele, Xce(b). Lastly, we conclude that each mouse taxa examined has a different functional Xce allele.


Asunto(s)
Compensación de Dosificación (Genética) , Genes Ligados a X , ARN Largo no Codificante/genética , Inactivación del Cromosoma X/genética , Alelos , Animales , Mapeo Cromosómico , Femenino , Sitios Genéticos , Haplotipos , Ratones , Filogenia
9.
BMC Genomics ; 15: 847, 2014 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-25277546

RESUMEN

BACKGROUND: The crisis of Misidentified and contaminated cell lines have plagued the biological research community for decades. Some repositories and journals have heeded calls for mandatory authentication of human cell lines, yet misidentification of mouse cell lines has received little publicity despite their importance in sponsored research. Short tandem repeat (STR) profiling is the standard authentication method, but it may fail to distinguish cell lines derived from the same inbred strain of mice. Additionally, STR profiling does not reveal karyotypic changes that occur in some high-passage lines and may have functional consequences. Single nucleotide polymorphism (SNP) profiling has been suggested as a more accurate and versatile alternative to STR profiling; however, a high-throughput method for SNP-based authentication of mouse cell lines has not been described. RESULTS: We have developed computational methods (Cell Line Authentication by SNP Profiling, CLASP) for cell line authentication and copy number analysis based on a cost-efficient SNP array, and we provide a reference database of commonly used mouse strains and cell lines. We show that CLASP readily discriminates among cell lines of diverse taxonomic origins, including multiple cell lines derived from a single inbred strain, intercross or wild caught mouse. CLASP is also capable of detecting contaminants present at concentrations as low as 5%. Of the 99 cell lines we tested, 15 exhibited substantial divergence from the reported genetic background. In all cases, we were able to distinguish whether the authentication failure was due to misidentification (one cell line, Ba/F3), the presence of multiple strain backgrounds (five cell lines), contamination by other cells and/or the presence of aneuploid chromosomes (nine cell lines). CONCLUSIONS: Misidentification and contamination of mouse cell lines is potentially as widespread as it is in human cell culture. This may have substantial implications for studies that are dependent on the expected background of their cell cultures. Laboratories can mitigate these risks by regular authentication of their cell cultures. Our results demonstrate that SNP array profiling is an effective method to combat cell line misidentification.


Asunto(s)
Polimorfismo de Nucleótido Simple , Aneuploidia , Animales , Línea Celular , Cruzamientos Genéticos , Variaciones en el Número de Copia de ADN/genética , Perfilación de la Expresión Génica , Genotipo , Desequilibrio de Ligamiento , Ratones , Ratones Endogámicos , Repeticiones de Microsatélite/genética , Análisis de Secuencia por Matrices de Oligonucleótidos
10.
Mamm Genome ; 24(1-2): 1-20, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23223940

RESUMEN

The laboratory mouse is an artificial construct with a complex relationship to its natural ancestors. In 2002, the mouse became the first mammalian model organism with a reference genome. Importantly, the mouse genome sequence was assembled from data on a single inbred laboratory strain, C57BL/6. Several large-scale genetic variant discovery efforts have been conducted, resulting in a catalog of tens of millions of SNPs and structural variants. High-density genotyping arrays covering a subset of those variants have been used to produce hundreds of millions of genotypes in laboratory stocks and a small number of wild mice. These landmark resources now enable us to determine relationships among laboratory mice, assign local ancestry at fine scale, resolve important controversies, and identify a new set of challenges-most importantly, the troubling scarcity of genetic data on the very natural populations from which the laboratory mouse was derived. Our aim with this review is to provide the reader with an historical context for the mouse as a model organism and to explain how practical decisions made in the past have influenced both the architecture of the laboratory mouse genome and the design and execution of current large-scale resources. We also provide examples on how the accomplishments of the past decade can be used by researchers to streamline the use of mice in their experiments and correctly interpret results. Finally, we propose future steps that will enable the mouse community to extend its successes in the decade to come.


Asunto(s)
Animales de Laboratorio/genética , Genoma , Ratones/genética , Animales , Mapeo Cromosómico/métodos , Variación Genética , Haplotipos , Fenotipo , Polimorfismo de Nucleótido Simple
11.
BMC Genomics ; 13: 34, 2012 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-22260749

RESUMEN

BACKGROUND: High-density genotyping arrays that measure hybridization of genomic DNA fragments to allele-specific oligonucleotide probes are widely used to genotype single nucleotide polymorphisms (SNPs) in genetic studies, including human genome-wide association studies. Hybridization intensities are converted to genotype calls by clustering algorithms that assign each sample to a genotype class at each SNP. Data for SNP probes that do not conform to the expected pattern of clustering are often discarded, contributing to ascertainment bias and resulting in lost information - as much as 50% in a recent genome-wide association study in dogs. RESULTS: We identified atypical patterns of hybridization intensities that were highly reproducible and demonstrated that these patterns represent genetic variants that were not accounted for in the design of the array platform. We characterized variable intensity oligonucleotide (VINO) probes that display such patterns and are found in all hybridization-based genotyping platforms, including those developed for human, dog, cattle, and mouse. When recognized and properly interpreted, VINOs recovered a substantial fraction of discarded probes and counteracted SNP ascertainment bias. We developed software (MouseDivGeno) that identifies VINOs and improves the accuracy of genotype calling. MouseDivGeno produced highly concordant genotype calls when compared with other methods but it uniquely identified more than 786000 VINOs in 351 mouse samples. We used whole-genome sequence from 14 mouse strains to confirm the presence of novel variants explaining 28000 VINOs in those strains. We also identified VINOs in human HapMap 3 samples, many of which were specific to an African population. Incorporating VINOs in phylogenetic analyses substantially improved the accuracy of a Mus species tree and local haplotype assignment in laboratory mouse strains. CONCLUSION: The problems of ascertainment bias and missing information due to genotyping errors are widely recognized as limiting factors in genetic studies. We have conducted the first formal analysis of the effect of novel variants on genotyping arrays, and we have shown that these variants account for a large portion of miscalled and uncalled genotypes. Genetic studies will benefit from substantial improvements in the accuracy of their results by incorporating VINOs in their analyses.


Asunto(s)
Estudio de Asociación del Genoma Completo , Hibridación de Ácido Nucleico , Sondas de Oligonucleótidos/química , Algoritmos , Animales , Bovinos , Análisis por Conglomerados , Perros , Genotipo , Haplotipos , Humanos , Ratones , Polimorfismo de Nucleótido Simple , Programas Informáticos
12.
Mol Metab ; 32: 109-121, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32029221

RESUMEN

OBJECTIVE: Type 2 diabetes (T2D) is a complex disease characterized by pancreatic islet dysfunction, insulin resistance, and disruption of blood glucose levels. Genome-wide association studies (GWAS) have identified > 400 independent signals that encode genetic predisposition. More than 90% of associated single-nucleotide polymorphisms (SNPs) localize to non-coding regions and are enriched in chromatin-defined islet enhancer elements, indicating a strong transcriptional regulatory component to disease susceptibility. Pancreatic islets are a mixture of cell types that express distinct hormonal programs, so each cell type may contribute differentially to the underlying regulatory processes that modulate T2D-associated transcriptional circuits. Existing chromatin profiling methods such as ATAC-seq and DNase-seq, applied to islets in bulk, produce aggregate profiles that mask important cellular and regulatory heterogeneity. METHODS: We present genome-wide single-cell chromatin accessibility profiles in >1,600 cells derived from a human pancreatic islet sample using single-cell combinatorial indexing ATAC-seq (sci-ATAC-seq). We also developed a deep learning model based on U-Net architecture to accurately predict open chromatin peak calls in rare cell populations. RESULTS: We show that sci-ATAC-seq profiles allow us to deconvolve alpha, beta, and delta cell populations and identify cell-type-specific regulatory signatures underlying T2D. Particularly, T2D GWAS SNPs are significantly enriched in beta cell-specific and across cell-type shared islet open chromatin, but not in alpha or delta cell-specific open chromatin. We also demonstrate, using less abundant delta cells, that deep learning models can improve signal recovery and feature reconstruction of rarer cell populations. Finally, we use co-accessibility measures to nominate the cell-specific target genes at 104 non-coding T2D GWAS signals. CONCLUSIONS: Collectively, we identify the islet cell type of action across genetic signals of T2D predisposition and provide higher-resolution mechanistic insights into genetically encoded risk pathways.


Asunto(s)
Secuenciación de Inmunoprecipitación de Cromatina , Aprendizaje Profundo , Diabetes Mellitus Tipo 2/genética , Islotes Pancreáticos/patología , Análisis de la Célula Individual , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Perfilación de la Expresión Génica , Humanos , Islotes Pancreáticos/metabolismo , Polimorfismo de Nucleótido Simple/genética
13.
PeerJ ; 5: e3720, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28875074

RESUMEN

A key step in the transformation of raw sequencing reads into biological insights is the trimming of adapter sequences and low-quality bases. Read trimming has been shown to increase the quality and reliability while decreasing the computational requirements of downstream analyses. Many read trimming software tools are available; however, no tool simultaneously provides the accuracy, computational efficiency, and feature set required to handle the types and volumes of data generated in modern sequencing-based experiments. Here we introduce Atropos and show that it trims reads with high sensitivity and specificity while maintaining leading-edge speed. Compared to other state-of-the-art read trimming tools, Atropos achieves significant increases in trimming accuracy while remaining competitive in execution times. Furthermore, Atropos maintains high accuracy even when trimming data with elevated rates of sequencing errors. The accuracy, high performance, and broad feature set offered by Atropos makes it an appropriate choice for the pre-processing of Illumina, ABI SOLiD, and other current-generation short-read sequencing datasets. Atropos is open source and free software written in Python (3.3+) and available at https://github.com/jdidion/atropos.

14.
G3 (Bethesda) ; 6(12): 4211-4216, 2016 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-27765810

RESUMEN

Wild-derived mouse inbred strains are becoming increasingly popular for complex traits analysis, evolutionary studies, and systems genetics. Here, we report the whole-genome sequencing of two wild-derived mouse inbred strains, LEWES/EiJ and ZALENDE/EiJ, of Mus musculus domesticus origin. These two inbred strains were selected based on their geographic origin, karyotype, and use in ongoing research. We generated 14× and 18× coverage sequence, respectively, and discovered over 1.1 million novel variants, most of which are private to one of these strains. This report expands the number of wild-derived inbred genomes in the Mus genus from six to eight. The sequence variation can be accessed via an online query tool; variant calls (VCF format) and alignments (BAM format) are available for download from a dedicated ftp site. Finally, the sequencing data have also been stored in a lossless, compressed, and indexed format using the multi-string Burrows-Wheeler transform. All data can be used without restriction.


Asunto(s)
Animales Salvajes/genética , Diploidia , Genoma , Ratones Endogámicos/genética , Animales , Animales Salvajes/clasificación , Femenino , Variación Genética , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Masculino , Ratones , Ratones Endogámicos/clasificación , Filogenia
15.
Genetics ; 204(1): 267-85, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27371833

RESUMEN

Gene duplication and loss are major sources of genetic polymorphism in populations, and are important forces shaping the evolution of genome content and organization. We have reconstructed the origin and history of a 127-kbp segmental duplication, R2d, in the house mouse (Mus musculus). R2d contains a single protein-coding gene, Cwc22 De novo assembly of both the ancestral (R2d1) and the derived (R2d2) copies reveals that they have been subject to nonallelic gene conversion events spanning tens of kilobases. R2d2 is also a hotspot for structural variation: its diploid copy number ranges from zero in the mouse reference genome to >80 in wild mice sampled from around the globe. Hemizygosity for high copy-number alleles of R2d2 is associated in cis with meiotic drive; suppression of meiotic crossovers; and copy-number instability, with a mutation rate in excess of 1 per 100 transmissions in some laboratory populations. Our results provide a striking example of allelic diversity generated by duplication and demonstrate the value of de novo assembly in a phylogenetic context for understanding the mutational processes affecting duplicate genes.


Asunto(s)
Evolución Biológica , Duplicación de Gen , Proteínas Nucleares/genética , Duplicaciones Segmentarias en el Genoma , Alelos , Animales , Animales Salvajes/genética , Evolución Molecular , Conversión Génica , Dosificación de Gen , Genes Duplicados , Variación Genética , Ratones , Filogenia , Proteínas de Unión al ARN
16.
Nat Commun ; 7: 11764, 2016 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-27353450

RESUMEN

Type 2 diabetes (T2D) results from the combined effects of genetic and environmental factors on multiple tissues over time. Of the >100 variants associated with T2D and related traits in genome-wide association studies (GWAS), >90% occur in non-coding regions, suggesting a strong regulatory component to T2D risk. Here to understand how T2D status, metabolic traits and genetic variation influence gene expression, we analyse skeletal muscle biopsies from 271 well-phenotyped Finnish participants with glucose tolerance ranging from normal to newly diagnosed T2D. We perform high-depth strand-specific mRNA-sequencing and dense genotyping. Computational integration of these data with epigenome data, including ATAC-seq on skeletal muscle, and transcriptome data across diverse tissues reveals that the tissue-specific genetic regulatory architecture of skeletal muscle is highly enriched in muscle stretch/super enhancers, including some that overlap T2D GWAS variants. In one such example, T2D risk alleles residing in a muscle stretch/super enhancer are linked to increased expression and alternative splicing of muscle-specific isoforms of ANK1.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Estudio de Asociación del Genoma Completo , Músculo Esquelético/metabolismo , Alelos , Epigenómica , Femenino , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad , Humanos , Masculino , Polimorfismo de Nucleótido Simple , ARN Mensajero , Análisis de Secuencia de ARN
18.
Nat Commun ; 6: 6118, 2015 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-25625625

RESUMEN

Ovarian clear-cell carcinoma (OCCC) is an aggressive form of ovarian cancer with high ARID1A mutation rates. Here we present a mutant mouse model of OCCC. We find that ARID1A inactivation is not sufficient for tumour formation, but requires concurrent activation of the phosphoinositide 3-kinase catalytic subunit, PIK3CA. Remarkably, the mice develop highly penetrant tumours with OCCC-like histopathology, culminating in haemorrhagic ascites and a median survival period of 7.5 weeks. Therapeutic treatment with the pan-PI3K inhibitor, BKM120, prolongs mouse survival by inhibiting the tumour cell growth. Cross-species gene expression comparisons support a role for IL-6 inflammatory cytokine signalling in OCCC pathogenesis. We further show that ARID1A and PIK3CA mutations cooperate to promote tumour growth through sustained IL-6 overproduction. Our findings establish an epistatic relationship between SWI/SNF chromatin remodelling and PI3K pathway mutations in OCCC and demonstrate that these pathways converge on pro-tumorigenic cytokine signalling. We propose that ARID1A protects against inflammation-driven tumorigenesis.


Asunto(s)
Adenocarcinoma de Células Claras/genética , Carcinogénesis/genética , Citocinas/metabolismo , Proteínas de Unión al ADN/genética , Inflamación/metabolismo , Mutación/genética , Proteínas Nucleares/genética , Neoplasias Ováricas/genética , Fosfatidilinositol 3-Quinasas/genética , Adenocarcinoma de Células Claras/tratamiento farmacológico , Adenocarcinoma de Células Claras/patología , Alelos , Animales , Carcinogénesis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Fosfatidilinositol 3-Quinasa Clase I , Proteínas de Unión al ADN/metabolismo , Activación Enzimática/efectos de los fármacos , Femenino , Genes Supresores de Tumor , Haploinsuficiencia/efectos de los fármacos , Inflamación/patología , Interleucina-6/metabolismo , Ratones Endogámicos C57BL , Proteínas Nucleares/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Inhibidores de las Quinasa Fosfoinosítidos-3 , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Transducción de Señal/efectos de los fármacos , Análisis de Supervivencia , Factores de Transcripción
19.
G3 (Bethesda) ; 6(2): 263-79, 2015 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-26684931

RESUMEN

Genotyping microarrays are an important resource for genetic mapping, population genetics, and monitoring of the genetic integrity of laboratory stocks. We have developed the third generation of the Mouse Universal Genotyping Array (MUGA) series, GigaMUGA, a 143,259-probe Illumina Infinium II array for the house mouse (Mus musculus). The bulk of the content of GigaMUGA is optimized for genetic mapping in the Collaborative Cross and Diversity Outbred populations, and for substrain-level identification of laboratory mice. In addition to 141,090 single nucleotide polymorphism probes, GigaMUGA contains 2006 probes for copy number concentrated in structurally polymorphic regions of the mouse genome. The performance of the array is characterized in a set of 500 high-quality reference samples spanning laboratory inbred strains, recombinant inbred lines, outbred stocks, and wild-caught mice. GigaMUGA is highly informative across a wide range of genetically diverse samples, from laboratory substrains to other Mus species. In addition to describing the content and performance of the array, we provide detailed probe-level annotation and recommendations for quality control.


Asunto(s)
Mapeo Cromosómico , Genoma , Genómica , Genotipo , Alelos , Animales , Mapeo Cromosómico/métodos , Biología Computacional/métodos , Dosificación de Gen , Genética de Población , Genómica/métodos , Ratones , Ratones Endogámicos , Análisis de Secuencia por Matrices de Oligonucleótidos , Filogenia , Polimorfismo de Nucleótido Simple
20.
Nat Genet ; 47(4): 353-60, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25730764

RESUMEN

Complex human traits are influenced by variation in regulatory DNA through mechanisms that are not fully understood. Because regulatory elements are conserved between humans and mice, a thorough annotation of cis regulatory variants in mice could aid in further characterizing these mechanisms. Here we provide a detailed portrait of mouse gene expression across multiple tissues in a three-way diallel. Greater than 80% of mouse genes have cis regulatory variation. Effects from these variants influence complex traits and usually extend to the human ortholog. Further, we estimate that at least one in every thousand SNPs creates a cis regulatory effect. We also observe two types of parent-of-origin effects, including classical imprinting and a new global allelic imbalance in expression favoring the paternal allele. We conclude that, as with humans, pervasive regulatory variation influences complex genetic traits in mice and provide a new resource toward understanding the genetic control of transcription in mammals.


Asunto(s)
Alelos , Desequilibrio Alélico/genética , Cruzamientos Genéticos , Expresión Génica , Especiación Genética , Ratones/genética , Animales , Compensación de Dosificación (Genética) , Femenino , Humanos , Masculino , Ratones Noqueados , Filogenia , Polimorfismo de Nucleótido Simple
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA